Home Computing Integrated photonic neuromorphic computing: opportunities and challenges

Integrated photonic neuromorphic computing: opportunities and challenges

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Proc. 26th Annual Conference on Neural Information Processing Systems (NIPS), Advances in Neural Information Processing Systems 25 (eds Pereira, F. et al.) (NeurIPS, 2012).

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article 

    Google Scholar
     

  • Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).

    Article 

    Google Scholar
     

  • Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    Article 

    Google Scholar
     

  • Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).

    Article 

    Google Scholar
     

  • Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).

    Article 

    Google Scholar
     

  • Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144 (2016).

    Article 

    Google Scholar
     

  • Koomey, J. et al. Implications of historical trends in the electrical efficiency of computing. IEEE Ann. Hist. Comput. 33, 46–54 (2010).

    Article 
    MathSciNet 

    Google Scholar
     

  • Brown, R. E. et al. Report to congress on server and data center energy efficiency: public law 109-431 (Lawrence Berkeley National Lab, 2008).

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article 

    Google Scholar
     

  • Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).

    Article 

    Google Scholar
     

  • Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

    Article 

    Google Scholar
     

  • Furber, S. B. et al. The SpiNNaker project. Proc. IEEE 102, 652–665 (2014).

    Article 

    Google Scholar
     

  • Meng, X. et al. Compact optical convolution processing unit based on multimode interference. Nat. Commun. 14, 3000 (2023).

    Article 

    Google Scholar
     

  • Nahmias, M. A. et al. Photonic multiply-accumulate operations for neural networks. IEEE J. Sel. Top. Quantum Electron. 26, 1–18 (2019).

    Article 

    Google Scholar
     

  • Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).

    Article 

    Google Scholar
     

  • He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    Article 

    Google Scholar
     

  • Rahim, A. et al. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photon. 3, 024003 (2021).

    Article 

    Google Scholar
     

  • Lischke, S. et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265 GHz. Nat. Photon.15, 925–931 (2021).

    Article 

    Google Scholar
     

  • Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349–354 (2018).

    Article 

    Google Scholar
     

  • Liu, Y. et al. A photonic integrated circuit-based erbium-doped amplifier. Science 376, 1309–1313 (2022).

    Article 

    Google Scholar
     

  • Nozaki, K. et al. Femtofarad optoelectronic integration demonstrating energy-saving signal conversion and nonlinear functions. Nat. Photon.13, 454–459 (2019).

    Article 

    Google Scholar
     

  • Youngblood, N., Ríos Ocampo, C. A., Pernice, W. H. P. & Bhaskaran, H. Integrated optical memristors. Nat. Photon. 17, 561–572 (2023).

    Article 

    Google Scholar
     

  • Farmakidis, N. et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv. 5, eaaw2687 (2019). This is the first implementation of an electronically programmable nanoscale photonic memory.

    Article 

    Google Scholar
     

  • Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    Article 

    Google Scholar
     

  • Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017).

    Article 

    Google Scholar
     

  • Dai, D. Silicon nanophotonic integrated devices for on-chip multiplexing and switching. J. Lightwave Technol. 35, 572–587 (2016).

    Article 

    Google Scholar
     

  • Hochberg, M. & Baehr-Jones, T. Towards fabless silicon photonics. Nat. Photon. 4, 492–494 (2010).

    Article 

    Google Scholar
     

  • Xiang, S. et al. A review: photonics devices, architectures, and algorithms for optical neural computing. J. Semicond. 42, 023105 (2021).

    Article 

    Google Scholar
     

  • Prucnal, P. R. & Shastri, B. J. Neuromorphic Photonics (CRC Press, 2017).

  • Peserico, N., Shastri, B. J. & Sorger, V. J. Integrated photonic tensor processing unit for a matrix multiply: a review. J. Lightwave Technol. 41, 3704–3716 (2023).

    Article 

    Google Scholar
     

  • Al-Qadasi, M. A., Chrostowski, L., Shastri, B. J. & Shekhar, S. Scaling up silicon photonic-based accelerators: challenges and opportunities. APL Photon. 7, 020902 (2022).

    Article 

    Google Scholar
     

  • Capmany, J. & Pérez, D. Programmable Integrated Photonics (Oxford University Press, 2020).

  • Prucnal, P. R. & Shastri, B. J. (eds) Neuromorphic Photonics (CRC Press, 2017).

  • Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article 

    Google Scholar
     

  • Tait, A. N. et al. Microring weight banks. IEEE J. Sel. Top. Quantum Electron. 22, 312–325 (2016).

    Article 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article 

    Google Scholar
     

  • Ling, Q. et al. On-chip optical matrix–vector multiplier based on mode division multiplexing. Chip 2, 100061 (2023).

    Article 

    Google Scholar
     

  • Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. https://doi.org/10.1126/sciadv.aau5759 (2019).

  • Zhou, W. et al. In-memory photonic dot-product engine with electrically programmable weight banks. Nat. Commun. 14, 2887 (2023).

    Article 

    Google Scholar
     

  • Tait, A. N. et al. Microring weight banks. IEEE J. Sel. Top. Quantum Electron. https://doi.org/10.1109/JSTQE.2016.2573583 (2016).

  • Yang, L. et al. On-chip CMOS-compatible optical signal processor. Opt. Expr.20, 13560–13565 (2012).

    Article 

    Google Scholar
     

  • Tait, A. N. et al. Continuous calibration of microring weights for analog optical networks. IEEE Photon. Technol. Lett. 28, 887–890 (2016).

    Article 

    Google Scholar
     

  • Marquez, B. A. et al. Fully-integrated photonic tensor core for image convolutions. Nanotechnology https://doi.org/10.1088/1361-6528/acde83 (2023).

  • Tait, A. N. et al. Broadcast and weight: an integrated network for scalable photonic spike processing. J. Lightwave Technol. 32, 3427–3439 (2014).

    Article 

    Google Scholar
     

  • Bai, B. et al. Microcomb-based integrated photonic processing unit. Nat. Commun. 14, 66 (2023).

    Article 

    Google Scholar
     

  • Farmakidis, N. et al. Scalable high-precision trimming of photonic resonances by polymer exposure to energetic beams. Nano Lett. 23, 4800–4806 (2023).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Transient tap couplers for wafer-level photonic testing based on optical phase change materials. ACS Photon.8, 1903–1908 (2021).

    Article 

    Google Scholar
     

  • Chen, R. et al. Non-volatile electrically programmable integrated photonics with a 5-bit operation. Nat. Commun. 14, 3465 (2023).

    Article 

    Google Scholar
     

  • Brückerhoff-Plückelmann, F. et al. Event-driven adaptive optical neural network. Sci. Adv. 9, eadi9127 (2023).

    Article 

    Google Scholar
     

  • Lee, J. S. et al. Spatio-spectral control of coherent nanophotonics. Nanophotonics https://doi.org/10.1515/nanoph-2023-0651 (2024).

  • Ohno, S. et al. Si microring resonator crossbar array for on-chip inference and training of the optical neural network. ACS Photon.9, 2614–2622 (2022).

    Article 

    Google Scholar
     

  • Li, X. et al. On-chip phase change optical matrix multiplication core. In Proc. 2020 IEEE International Electron Devices Meeting (IEDM) 7.5.1–7.5.4 (IEEE, 2020).

  • Youngblood, N. et al. Phase change photonics for brain-inspired computing (Conference Presentation). In Proc. Micro- and Nanotechnology Sensors, Systems, and Applications XI (eds George, T. & Islam, M. S.) 109820P (SPIE, 2019).

  • Farmakidis, N. et al. Electronically reconfigurable photonic switches incorporating plasmonic structures and phase change materials. Adv. Sci. 9, 2200383 (2022).

    Article 

    Google Scholar
     

  • Brückerhoff-Plückelmann, F. et al. Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers. Nanophotonics 11, 4063–4072 (2022).

    Article 

    Google Scholar
     

  • Meng, J. et al. Electrical programmable multilevel nonvolatile photonic random-access memory. Light Sci. Appl. 12, 189 (2023).

    Article 

    Google Scholar
     

  • Wendland, D. et al. Coherent dimension reduction with integrated photonic circuits exploiting tailored disorder. J. Opt. Soc. Am. B 40, B35–B40 (2023).

    Article 

    Google Scholar
     

  • Aggarwal, S. et al. Reduced rank photonic computing accelerator. Optica 10, 1074–1080 (2023).

    Article 

    Google Scholar
     

  • Wei, M. et al. Electrically programmable phase-change photonic memory for optical neural networks with nanoseconds in situ training capability. Adv. Photon. 5, 046004 (2023).

    Article 

    Google Scholar
     

  • Brückerhoff-Plückelmann, F. et al. Hybrid electro-optic crossbar array for matrix–vector multiplications. in CLEO: Science and Innovations (Optica Publishing Group, 2023).

  • Qu, Y. et al. Inverse design of an integrated-nanophotonics optical neural network. Sci. Bull. 65, 1177–1183 (2020).

    Article 

    Google Scholar
     

  • Lee, J. S. et al. Polarization-selective reconfigurability in hybridized-active-dielectric nanowires. Sci. Adv. 8, eabn9459 (2022).

    Article 

    Google Scholar
     

  • Alam, M. S. et al. Photonic integrated circuit for rapidly tunable orbital angular momentum generation using Sb2Se3ultra‐low‐loss phase change material. Adv. Opt. Mater. 10, 2200098 (2022).

    Article 

    Google Scholar
     

  • Miller, D. A. Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013).

    Article 

    Google Scholar
     

  • Reck, M. et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994).

    Article 

    Google Scholar
     

  • Ribeiro, A. et al. Demonstration of a 4 × 4-port universal linear circuit. Optica 3, 1348–1357 (2016).

    Article 

    Google Scholar
     

  • Clements, W. R. et al. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).

    Article 

    Google Scholar
     

  • Miller, D. A. Self-aligning universal beam coupler. Opt. Expr. 21, 6360–6370 (2013).

    Article 

    Google Scholar
     

  • Mennea, P. L. et al. Modular linear optical circuits. Optica 5, 1087–1090 (2018).

    Article 

    Google Scholar
     

  • Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018).

    Article 

    Google Scholar
     

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441 (2017). In this article, the scalable coherent photonic accelerator makes a significant impact on the field by showing on-chip deep learning.

    Article 

    Google Scholar
     

  • Pai, S. et al. Parallel programming of an arbitrary feedforward photonic network. IEEE J. Sel. Top. Quantum Electron. 26, 1–13 (2020).

    Article 

    Google Scholar
     

  • Bagherian, H. et al. On-chip optical convolutional neural networks. Preprint at arXiv https://doi.org/10.48550/arXiv.1808.03303 (2018).

  • Demirkiran, C. et al. An electro-photonic system for accelerating deep neural networks. ACM J. Emerg. Technol. Comput. Syst. 19, 1–31 (2023).

    Article 

    Google Scholar
     

  • Giamougiannis, G. et al. Analog nanophotonic computing going practical: silicon photonic deep learning engines for tiled optical matrix multiplication with dynamic precision. Nanophotonics 12, 963–973 (2023).

    Article 

    Google Scholar
     

  • Moralis-Pegios, M. et al. Neuromorphic silicon photonics and hardware-aware deep learning for high-speed inference. J. Lightwave Technol. 40, 3243–3254 (2022).

    Article 

    Google Scholar
     

  • Zhou, H. et al. Self-configuring and reconfigurable silicon photonic signal processor. ACS Photon. 7, 792–799 (2020).

    Article 

    Google Scholar
     

  • Totovic, A. et al. Programmable photonic neural networks combining WDM with coherent linear optics. Sci. Rep. 12, 5605 (2022).

    Article 

    Google Scholar
     

  • Choutagunta, K. et al. Adapting Mach–Zehnder mesh equalizers in direct-detection mode-division-multiplexed links. J. Lightwave Technol. 38, 723–735 (2019).

    Article 

    Google Scholar
     

  • Youngblood, N. Coherent photonic crossbar arrays for large-scale matrix-matrix multiplication. IEEE J. Sel. Top. Quantum Electron. https://doi.org/10.1109/JSTQE.2022.3171167 (2022).

  • Ding, C. et al. CirCNN: accelerating and compressing deep neural networks using block-circulant weight matrices. In Proc. 50th Annual IEEE/ACM International Symposium on Microarchitecture (2017).

  • Nakajima, M. et al. Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware. Nat. Commun. 13, 7847 (2022).

    Article 

    Google Scholar
     

  • Cruz-Cabrera, A. A. et al. Reinforcement and backpropagation training for an optical neural network using self-lensing effects. IEEE Trans. Neural Netw. 11, 1450–1457 (2000).

    Article 

    Google Scholar
     

  • Hughes, T. W. et al. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica 5, 864–871 (2018).

    Article 

    Google Scholar
     

  • Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).

    Article 

    Google Scholar
     

  • Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Qian, C. et al. Performing optical logic operations by a diffractive neural network. Light Sci. Appl. 9, 59 (2020).

    Article 

    Google Scholar
     

  • Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).

    Article 

    Google Scholar
     

  • Fu, T. et al. Photonic machine learning with on-chip diffractive optics. Nat. Commun. 14, 70 (2023). This article shows an important implementation of optical machine learning with on-chip diffractive optics.

    Article 

    Google Scholar
     

  • Wang, Z. et al. Integrated photonic metasystem for image classifications at telecommunication wavelength. Nat. Commun. 13, 2131 (2022).

    Article 

    Google Scholar
     

  • Chen, Z. et al. Deep learning with coherent VCSEL neural networks. Nat. Photon. https://doi.org/10.48550/arXiv.2207.05329 (2023).

  • Zhu, H. et al. Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun. 13, 1044 (2022). This article has been highly influential for neuromorphic hardware, which demonstrates a space-efficient optical computational unit that realizes on-chip diffractive neural network.

    Article 

    Google Scholar
     

  • Liao, K., Dai, T., Yan, Q., Hu, X. & Gong, Q. Integrated photonic neural networks: opportunities and challenges. ACS Photon. 10, 2001–2010 (2023).

    Article 

    Google Scholar
     

  • Seok, T. J. et al. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica 3, 64–70 (2016).

    Article 

    Google Scholar
     

  • Sattari, H. et al. Silicon photonic MEMS phase-shifter. Opt. Expr. 27, 18959–18969 (2019).

    Article 

    Google Scholar
     

  • Sun, H. et al. Silicon photonic phase shifters and their applications: a review. Micromachines 13, 1509 (2022).

    Article 

    Google Scholar
     

  • Qi, Y. & Li, Y. Integrated lithium niobate photonics. Nanophotonics 9, 1287–1320 (2020).

    Article 

    Google Scholar
     

  • Giamougiannis, G. et al. A coherent photonic crossbar for scalable universal linear optics. J. Lightwave Technol. 41, 2425–2442 (2023).

    Article 

    Google Scholar
     

  • Wu, T. et al. Lithography-free reconfigurable integrated photonic processor. Nat. Photon. 17, 644–645 (2023).

    Article 

    Google Scholar
     

  • Fan, L. et al. Experimental realization of convolution processing in photonic synthetic frequency dimensions. Sci. Adv. 9, eadi4956 (2023).

    Article 

    Google Scholar
     

  • Zhao, H. et al. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nat. Commun. 13, 5426 (2022).

    Article 

    Google Scholar
     

  • Mourgias-Alexandris, G. et al. Noise-resilient and high-speed deep learning with coherent silicon photonics. Nat. Commun. 13, 5572 (2022).

    Article 

    Google Scholar
     

  • Passalis, N. et al. Training noise-resilient recurrent photonic networks for financial time series analysis. In Proc. 2020 28th European Signal Processing Conference (EUSIPCO) 1556–1560 (European Association for Signal Processing, 2021).

  • Varri, A. et al. Scalable non‐volatile tuning of photonic computational memories by automated silicon ion implantation. Adv. Mater. 36, 2310596 (2023).

    Article 

    Google Scholar
     

  • Jayatilleka, H. et al. Post-fabrication trimming of silicon photonic ring resonators at wafer-scale. J. Lightwave Technol. 39, 5083–5088 (2021).

    Article 

    Google Scholar
     

  • Giamougiannis, G. et al. Universal linear optics revisited: new perspectives for neuromorphic computing with silicon photonics. IEEE J. Sel. Top. Quantum Electron. 29, 1–16 (2022).

    Article 

    Google Scholar
     

  • Jha, A., Huang, C. & Prucnal, P. R. Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics. Opt. Lett. 45, 4819–4822 (2020).

    Article 

    Google Scholar
     

  • Mourgias-Alexandris, G. et al. An all-optical neuron with sigmoid activation function. Opt. Expr. 27, 9620–9630 (2019).

    Article 

    Google Scholar
     

  • Hurtado, A. et al. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems. Appl. Phys. Lett. 100, 103703 (2012).

    Article 

    Google Scholar
     

  • Crnjanski, J. et al. Adaptive sigmoid-like and PReLU activation functions for all-optical perceptron. Opt. Lett. 46, 2003–2006 (2021).

    Article 

    Google Scholar
     

  • Rasmussen, T. S., Yu, Y. & Mork, J. All-optical non-linear activation function for neuromorphic photonic computing using semiconductor Fano lasers. Opt. Lett. 45, 3844–3847 (2020).

    Article 

    Google Scholar
     

  • Rönn, J. et al. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat. Commun. 10, 432 (2019).

    Article 

    Google Scholar
     

  • Cheng, Z. et al. On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017).

    Article 

    Google Scholar
     

  • Zhou, W. et al. Phase-change materials for energy-efficient photonic memory and computing. MRS Bull. 47, 502–510 (2022).

    Article 

    Google Scholar
     

  • Feldmann, J. et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    Article 

    Google Scholar
     

  • Zhou, W. et al. Artificial biphasic synapses based on nonvolatile phase‐change photonic memory cells. Phys. Status Sol. Rapid Res. Lett. 16, 2100487 (2022).

    Article 

    Google Scholar
     

  • Aggarwal, S. et al. All optical tunable RF filter using elemental antimony. Nanophotonics https://doi.org/10.1515/nanoph-2023-0654 (2024).

  • Pappas, C. et al. Programmable Tanh-, ELU-, sigmoid-, and sin-based nonlinear activation functions for neuromorphic photonics. IEEE J. Sel. Top. Quantum Electron. 29, 1–10 (2023).


    Google Scholar
     

  • Fard, M. M. P. et al. Experimental realization of arbitrary activation functions for optical neural networks. Opt. Expr.28, 12138–12148 (2020).

    Article 

    Google Scholar
     

  • Tait, A. N. et al. Silicon photonic modulator neuron. Phys. Rev. Appl. 11, 064043 (2019). This article is one of the pivotal realizations of a silicon photonic modulator neuron.

    Article 

    Google Scholar
     

  • George, J. K. et al. Neuromorphic photonics with electro-absorption modulators. Opt. Expr. 27, 5181–5191 (2019).

    Article 

    Google Scholar
     

  • Amin, R. et al. ITO-based electro-absorption modulator for photonic neural activation function. APL Mater. 7, 081112 (2019).

    Article 

    Google Scholar
     

  • Skalli, A. et al. Photonic neuromorphic computing using vertical cavity semiconductor lasers. Opt. Mater. Expr. 12, 2395–2414 (2022).

    Article 

    Google Scholar
     

  • Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004).

    Article 

    Google Scholar
     

  • Jaeger, H. Short term memory in echo state networks. GMD Report 152 (GMD Forschungszentrum Informationstechnik, 2002).

  • Van der Sande, G., Brunner, D. & Soriano, M. C. Advances in photonic reservoir computing. Nanophotonics 6, 561–576 (2017).

    Article 

    Google Scholar
     

  • Brunner, D. & Fischer, I. Reconfigurable semiconductor laser networks based on diffractive coupling. Opt. Lett. 40, 3854–3857 (2015).

    Article 

    Google Scholar
     

  • Rafayelyan, M. et al. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction. Phys. Rev. X 10, 041037 (2020).


    Google Scholar
     

  • Larger, L. et al. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7, 011015 (2017).


    Google Scholar
     

  • Paquot, Y. et al. Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012).

    Article 

    Google Scholar
     

  • Larger, L. et al. Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing. Opt. Expr. 20, 3241–3249 (2012).

    Article 

    Google Scholar
     

  • Vandoorne, K. et al. Parallel reservoir computing using optical amplifiers. IEEE Trans. Neural Netw. 22, 1469–1481 (2011).

    Article 

    Google Scholar
     

  • Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).

    Article 

    Google Scholar
     

  • Boikov, I. K., Brunner, D. & De Rossi, A. Evanescent coupling of nonlinear integrated cavities for all-optical reservoir computing. New J. Phys. 25, 093056 (2023).

    Article 

    Google Scholar
     

  • Staffoli, E. et al. Nonlinear response of silicon photonics microresonators for reservoir computing neural network. Preprint at arXiv https://doi.org/10.48550/arXiv.2302.10203 (2023).

  • Denis-Le Coarer, F. et al. All-optical reservoir computing on a photonic chip using silicon-based ring resonators. IEEE J. Sel. Top. Quantum Electron. 24, 1–8 (2018).

    Article 

    Google Scholar
     

  • Mesaritakis, C., Papataxiarhis, V. & Syvridis, D. Micro ring resonators as building blocks for an all-optical high-speed reservoir-computing bit-pattern-recognition system. J. Opt. Soc. Am. B 30, 3048–3055 (2013).

    Article 

    Google Scholar
     

  • Takano, K. et al. Compact reservoir computing with a photonic integrated circuit. Opt. Expr. 26, 29424–29439 (2018).

    Article 

    Google Scholar
     

  • Nakajima, M., Tanaka, K. & Hashimoto, T. Scalable reservoir computing on coherent linear photonic processor. Commun. Phys. 4, 20 (2021).

    Article 

    Google Scholar
     

  • McMahon, P. L. et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Roques-Carmes, C. & Soljačić, M. Photonic Ising machines go big. Physics 12, 61 (2019).

    Article 

    Google Scholar
     

  • Roques-Carmes, C. et al. Heuristic recurrent algorithms for photonic Ising machines. Nat. Commun. 11, 249 (2020).

    Article 

    Google Scholar
     

  • Hamerly, R. et al. Experimental investigation of performance differences between coherent Ising machines and a quantum annealer. Sci. Adv. 5, eaau0823 (2019).

    Article 

    Google Scholar
     

  • Marandi, A. et al. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photon. 8, 937–942 (2014).

    Article 

    Google Scholar
     

  • Inagaki, T. et al. A coherent Ising machine for 2000-node optimization problems. Science 354, 603–606 (2016).

    Article 

    Google Scholar
     

  • Inagaki, T. et al. Large-scale Ising spin network based on degenerate optical parametric oscillators. Nat. Photon. 10, 415–419 (2016).

    Article 

    Google Scholar
     

  • Prabhu, M. et al. Accelerating recurrent Ising machines in photonic integrated circuits. Optica 7, 551–558 (2020).

    Article 

    Google Scholar
     

  • Vázquez, M. R. et al. Optical NP problem solver on laser-written waveguide platform. Opt. Expr. 26, 702–710 (2018).

    Article 

    Google Scholar
     

  • Pierangeli, D. et al. Noise-enhanced spatial-photonic Ising machine. Nanophotonics 9, 4109–4116 (2020).

    Article 

    Google Scholar
     

  • Pierangeli, D., Marcucci, G. & Conti, C. Adiabatic evolution on a spatial-photonic Ising machine. Optica 7, 1535–1543 (2020).

    Article 

    Google Scholar
     

  • Pierangeli, D., Marcucci, G. & Conti, C. Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett. 122, 213902 (2019).

    Article 

    Google Scholar
     

  • Owen-Newns, D. et al. Photonic spiking neural networks with highly efficient training protocols for ultrafast neuromorphic computing systems. Intell. Comput. 2, 0031 (2023).

    Article 

    Google Scholar
     

  • Shastri, B. J. et al. Spike processing with a graphene excitable laser. Sci. Rep. 6, 19126 (2016).

    Article 

    Google Scholar
     

  • Robertson, J. et al. Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments. Opt. Lett. 42, 1560–1563 (2017).

    Article 

    Google Scholar
     

  • Jha, A. et al. Photonic spiking neural networks and graphene-on-silicon spiking neurons. J. Lightwave Technol. 40, 2901–2914 (2022).

    Article 

    Google Scholar
     

  • Hurtado, A. et al. Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm vertical-cavity surface-emitting lasers (VCSELs). Opt. Expr. 18, 9423–9428 (2010).

    Article 

    Google Scholar
     

  • Al-Seyab, R. et al. Controlled single-and multiple-pulse excitability in VCSELs for novel spiking photonic neurons. In 2014 International Semiconductor Laser Conf. (IEEE, 2014).

  • Hurtado, A. & Javaloyes, J. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems. Appl. Phys. Lett. 107, 241103 (2015).

    Article 

    Google Scholar
     

  • Pammi, V. A. et al. Photonic computing with single and coupled spiking micropillar lasers. IEEE J. Sel. Top. Quantum Electron. 26, 1–7 (2019).

    Article 

    Google Scholar
     

  • Selmi, F. et al. Spike latency and response properties of an excitable micropillar laser. Phys. Rev. E 94, 042219 (2016).

    Article 

    Google Scholar
     

  • Barbay, S., Kuszelewicz, R. & Yacomotti, A. M. Excitability in a semiconductor laser with saturable absorber. Opt. Lett. 36, 4476–4478 (2011).

    Article 

    Google Scholar
     

  • Robertson, J. et al. Image edge detection with a photonic spiking VCSEL-neuron. Opt. Expr.28, 37526–37537 (2020).

    Article 

    Google Scholar
     

  • Hejda, M. et al. Neuromorphic encoding of image pixel data into rate-coded optical spike trains with a photonic VCSEL-neuron. APL Photon.6, 060802 (2021).

    Article 

    Google Scholar
     

  • Moughames, J. et al. 3D printed multimode-splitters for photonic interconnects. Opt. Mater. Expr. 10, 2952–2961 (2020). This article showed that 3D-printed components could form highly efficient multimode photonic interconnects and couplers.

    Article 

    Google Scholar
     

  • Grabulosa, A. et al. Additive 3D photonic integration that is CMOS compatible. Nanotechnology 34, 322002 (2023).

    Article 

    Google Scholar
     

  • Billah, M. et al. Multi-chip integration of lasers and silicon photonics by photonic wire bonding. in CLEO: Science and Innovations https://doi.org/10.1364/CLEO_SI.2015.STu2F.2 (Optica Publishing Group, 2015).

  • Lindenmann, N. et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Expr. 20, 17667–17677 (2012).

    Article 

    Google Scholar
     

  • Lindenmann, N. et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. J. Lightwave Technol. 33, 755–760 (2015).

    Article 

    Google Scholar
     

  • Crosnier, G. et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat. Photon.11, 297–300 (2017).

    Article 

    Google Scholar
     

  • Inagaki, T. et al. Collective and synchronous dynamics of photonic spiking neurons. Nat. Commun. 12, 2325 (2021).

    Article 

    Google Scholar
     

  • Romeira, B. et al. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors. Opt. Expr.21, 20931–20940 (2013).

    Article 

    Google Scholar
     

  • Hejda, M. et al. Artificial optoelectronic spiking neuron based on a resonant tunnelling diode coupled to a vertical cavity surface emitting laser. Nanophotonics 12, 857–867 (2022).

    Article 

    Google Scholar
     

  • Hejda, M. et al. Resonant tunneling diode nano-optoelectronic excitable nodes for neuromorphic spike-based information processing. Phys. Rev. Appl. 17, 024072 (2022).

    Article 

    Google Scholar
     

  • Lourenco, J. et al. Resonant tunnelling diode–photodetectors for spiking neural networks. J. Phys. Conf. Ser. 2407, 012047 (2022) .

    Article 

    Google Scholar
     

  • Ryckman, J. D. et al. Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition. Opt. Expr.21, 10753–10763 (2013).

    Article 

    Google Scholar
     

  • Aggarwal, S. et al. Antimony as a programmable element in integrated nanophotonics. Nano Lett. 22, 3532–3538 (2022).

    Article 

    Google Scholar
     

  • Dong, B. et al. Higher-dimensional processing using a photonic tensor core with continuous-time data. Nat. Photon.17, 1080–1088 (2023). This article demonstrates a crossbar array architecture in which an additional degree of parallelization was added using radiofrequency time-division multiplexing.

    Article 

    Google Scholar
     

  • Bandyopadhyay, S. et al. Single chip photonic deep neural network with accelerated training. Preprint at https://arxiv.org/abs/2208.01623 (2022).

  • Shastri, B. J. et al. Graphene excitable laser for photonic spike processing. In Proc. 2013 IEEE Photonics Conference (IEEE, 2013). This article presents a unified platform for spike processing with a graphene-coupled laser system that can simultaneously exhibit logic-level restoration, cascadability and input–output isolation.

  • Robertson, J. et al. Ultrafast neuromorphic photonic image processing with a VCSEL neuron. Sci. Rep. 12, 4874 (2022).

    Article 

    Google Scholar
     

  • Li, H.-Y. S., Qiao, Y. & Psaltis, D. Optical network for real-time face recognition. Appl. Opt. 32, 5026–5035 (1993).

    Article 

    Google Scholar
     

  • Psaltis, D. et al. Holography in artificial neural networks. Nature 343, 325–330 (1990).

    Article 

    Google Scholar
     

  • Farhat, N. H. et al. Optical implementation of the Hopfield model. Appl. Opt. 24, 1469–1475 (1985).

    Article 

    Google Scholar
     

  • Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photon. 10, 554–560 (2016).

    Article 

    Google Scholar
     

  • Ristok, S. et al. Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components. Opt. Mater. Expr. 10, 2370–2378 (2020).

    Article 

    Google Scholar
     

  • Wang, T. et al. An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123 (2022).

    Article 

    Google Scholar
     

  • Dinc, N. U. et al. Computer generated optical volume elements by additive manufacturing. Nanophotonics 9, 4173–4181 (2020).

    Article 

    Google Scholar
     

  • Porte, X. et al. Direct (3 + 1) D laser writing of graded-index optical elements. Optica 8, 1281–1287 (2021).

    Article 

    Google Scholar
     

  • Dinc, N. U. et al. From 3D to 2D and back again. Nanophotonics 12, 777–793 (2023).

    Article 

    Google Scholar
     

  • Dietrich, P.-I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nat. Photon. 12, 241–247 (2018).

    Article 

    Google Scholar
     

  • Moughames, J. et al. Three-dimensional waveguide interconnects for scalable integration of photonic neural networks. Optica 7, 640–646 (2020).

    Article 

    Google Scholar
     

  • Madrid‐Wolff, J. et al. Controlling light in scattering materials for volumetric additive manufacturing. Adv. Sci. 9, 2105144 (2022).

    Article 

    Google Scholar
     

  • Hunter, S. et al. Potentials of two-photon based 3-D optical memories for high performance computing. Appl. Opt. 29, 2058–2066 (1990).

    Article 

    Google Scholar
     

  • Li, Q. et al. Direct 3D-printing of microlens on single mode polarization-stable VCSEL chip for miniaturized optical spectroscopy. J. Opt. Microsyst. 3, 033501 (2023).

    Article 

    Google Scholar
     

  •  

    Reference

    Denial of responsibility! TechCodex is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a Comment