Home Computing Potential and challenges of computing with molecular materials

Potential and challenges of computing with molecular materials

  • Rotman, D. Molecular computing. MIT Technology Review https://go.nature.com/3OSS3w1 (2000).

  • Cuevas, J. C. & Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment (World Scientific, 2010).

  • Carroll, R. L. & Gorman, C. B. The genesis of molecular electronics. Angew. Chem. Int. Ed. 41, 4378–4400 (2002).

    Article 

    Google Scholar
     

  • Chen, J., Reed, M., Rawlett, A. & Tour, J. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hickmott, T. Low‐frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Chopra, K. Current-controlled negative resistance in thin niobium oxide films. Proc. IEEE 51, 941–942 (1963).

    Article 

    Google Scholar
     

  • Dearnaley, G., Stoneham, A. & Morgan, D. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129 (1970).

    Article 

    Google Scholar
     

  • Chua, L. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971).

    Article 

    Google Scholar
     

  • Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, R. S. Summary of the Faraday discussion on new memory paradigms: memristive phenomena and neuromorphic applications. Faraday Discuss. 213, 579–587 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, D., Wang, X., Jia, C., Lee, T. & Guo, X. Molecular-scale electronics: from concept to function. Chem. Rev. 116, 4318–4440 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. & Fraser Stoddart, J. From molecular to supramolecular electronics. Nat. Rev. Mater. 6, 804–828 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Collier, C. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geffroy, B., Le Roy, P. & Prat, C. Organic light‐emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55, 572–582 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Zou, S.-J. et al. Recent advances in organic light-emitting diodes: toward smart lighting and displays. Mater. Chem. Front. 4, 788–820 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Williams, R. S. What’s next?[The end of Moore’s law]. Comput. Sci. Eng. 19, 7–13 (2017).

    Article 

    Google Scholar
     

  • Knight, W. AI can do great things—if it doesn’t burn the planet. Wired Magazine https://go.nature.com/3ORsdbG (2020).

  • Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaeger, H., Noheda, B. & Van Der Wiel, W. G. Toward a formal theory for computing machines made out of whatever physics offers. Nat. Commun. 14, 4911 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goswami, S., Goswami, S. & Venkatesan, T. An organic approach to low energy memory and brain inspired electronics. Appl. Phys. Rev. 7, 021303 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Valov, I. & Kozicki, M. Organic memristors come of age. Nat. Mater. 16, 1170–1172 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gray, H. B. New structures in transition metal chemistry. Coord. Chem. Rev. 1, 156–163 (1966).

    Article 
    CAS 

    Google Scholar
     

  • Jørgensen, C. K. Differences between the four halide ligands, and discussion remarks on trigonal-bipyramidal complexes, on oxidation states, and on diagonal elements of one-electron energy. Coord. Chem. Rev. 1, 164–178 (1966).

    Article 

    Google Scholar
     

  • Goswami, S., Mukherjee, R. & Chakravorty, A. Chemistry of ruthenium. 12. Reactions of bidentate ligands with diaquabis [2-(arylazo) pyridine] ruthenium (II) cation. Stereoretentive synthesis of tris chelates and their characterization: metal oxidation,ligand reduction, and spectroelectrochemical correlation.Inorg. Chem. 22, 2825–2832 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Samanta, S., Ghosh, P. & Goswami, S. Recent advances on the chemistry of transition metal complexes of 2-(arylazo) pyridines and its arylamino derivatives. Dalton Trans. 41, 2213–2226 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joy, S. et al. Isolation and assessment of the molecular and electronic structures of azo-anion-radical complexes of chromium and molybdenum. Experimental and theoretical characterization of complete electron-transfer series. Inorg. Chem. 50, 9993–10004 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article 

    Google Scholar
     

  • Hamann, T. W., Jensen, R. A., Martinson, A. B., Van Ryswyk, H. & Hupp, J. T. Advancing beyond current generation dye-sensitized solar cells. Energy Environ. Sci. 1, 66–78 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Goswami, S. et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16, 1216–1224 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuo, Y. et al. A dynamical compact model of diffusive and drift memristors for neuromorphic computing. Adv. Electron. Mater. 8, 2100696 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rath, S. P., Thompson, D., Goswami, S. & Goswami, S. Many‐body molecular interactions in a memristor. Adv. Mater. 35, 2204551 (2022).

    Article 

    Google Scholar
     

  • Goswami, S. et al. Decision trees within a molecular memristor. Nature 597, 51–56 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paul, N., Samanta, S. & Goswami, S. Redox induced electron transfer in doublet azo-anion diradical rhenium (II) complexes. Characterization of complete electron transfer series. Inorg. Chem. 49, 2649–2655 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouellette, R. & Rawn, J. Organic Chemistry 135–165 (Academic Press, 2018).

  • Bhatt, V. Essentials of Coordination Chemistry: A Simplified Approach with 3D Visuals 63–109 (Academic Press, 2015).

  • Li, Y. et al. Recent advances in organic‐based materials for resistive memory applications. InfoMat 2, 995–1033 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Goswami, S. et al. Charge disproportionate molecular redox for discrete memristive and memcapacitive switching. Nat. Nanotechnol. 15, 380–389 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, S. I. et al. Energy and space efficient parallel adder using molecular memristors. Adv. Mater. 35, 2206128 (2022).

    Article 

    Google Scholar
     

  • Shao, J.-Y., Cui, B.-B., Tang, J.-H. & Zhong, Y.-W. Resistive memory switching of transition-metal complexes controlled by ligand design. Coord. Chem. Rev. 393, 21–36 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, P. K. et al. Recent advances in covalent organic polymers‐based thin films as memory devices. J. Polymer Sci. https://doi.org/10.1002/pol.20230273 (2023).

  • Cho, B., Song, S., Ji, Y., Kim, T. W. & Lee, T. Organic resistive memory devices: performance enhancement, integration, and advanced architectures. Adv. Funct. Mater. 21, 2806–2829 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lapham, P., Vilà-Nadal, L., Cronin, L. & Georgiev, V. P. Influence of the contact geometry and counterions on the current flow and charge transfer in polyoxometalate molecular junctions: a density functional theory study. J. Phys. Chem. C 125, 3599–3610 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mainzer, K. in Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua (eds Adamatzky, A. &Chen, G.) 146–159 (World Scientific, 2013).

  • Guerin, S. et al. Control of piezoelectricity in amino acids by supramolecular packing. Nat. Mater. 17, 180–186 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petit, L., Maldivi, P. & Adamo, C. Predictions of optical excitations in transition-metal complexes with time dependent-density functional theory: influence of basis sets. J. Chem. Theory Comput. 1, 953–962 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, V. et al. Precursor to gas sensor: a detailed study of the suitability of copper complexes as an MOCVD precursor and their application in gas sensing. Inorg. Chem. 60, 17141–17150 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kettle, S. F. A. Physical Inorganic Chemistry: A Coordination Chemistry Approach 185–210 (University Science Books, 1996).

  • Wan, T. et al. In‐sensor computing: materials, devices, and integration technologies. Adv. Mater. 35, 2203830 (2022).

    Article 

    Google Scholar
     

  • Pastur-Romay, L. A., Cedrón, F., Pazos, A. & Porto-Pazos, A. B. Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications. Int. J. Mol. Sci. 17, 1313 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. & Humphrey, M. G. Multiphoton absorption at metal alkynyl complexes. Coord. Chem. Rev. 473, 214820 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lokhande, P. et al. The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord. Chem. Rev. 473, 214771 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hu, M. et al. Memristor‐based analog computation and neural network classification with a dot product engine. Adv. Mater. 30, 1705914 (2018).

    Article 

    Google Scholar
     

  • Xiao, T. P., Bennett, C. H., Feinberg, B., Agarwal, S. & Marinella, M. J. Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 7, 031301 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Csaba, G. & Porod, W. Coupled oscillators for computing: a review and perspective. Appl. Phys. Rev. 7, 011302 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ledoux, E. & Brunel, N. Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Front. Comput. Neurosci. 5, 25 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, S. et al. Geometric deep optical sensing. Science 379, eade1220 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christensen, D. V. et al. 2022 roadmap on neuromorphic computing and engineering. Neuromorph. Comput. Eng. 2, 022501 (2022).

    Article 

    Google Scholar
     

  • Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).

    Article 

    Google Scholar
     

  • Lanza, M. et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hu, M., Strachan, J. P., Li, Z. & Williams R. S. Crossbar arrays for calculating matrix multiplication. US Patent 10,497,440 B2 (2019).

  • Hu, M., Strachan, J. P., Li, Z. & Williams, R. S. Linear transformation accelerators. US Patent 10,529,418 B2 (2020).

  • Ascoli, A. et al. On local activity and edge of chaos in a NaMLab memristor. Front. Neurosci. 15, 651452 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

    Article 

    Google Scholar
     

  • Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terenzio, M., Schiavo, G. & Fainzilber, M. Compartmentalized signaling in neurons: from cell biology to neuroscience. Neuron 96, 667–679 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alberts, B. et al. Molecular Biology of the Cell 4th edn, Ch. 11 (Garland Science, 2002).

  • van Reenen, S., Kemerink, M. & Snaith, H. J. Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 3808–3814 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Harikesh, P. C. et al. Ion-tunable antiambipolarity in mixed ion–electron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater. 22, 242–248 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarkar, T. et al. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 5, 774–783 (2022).

    Article 

    Google Scholar
     

  • Burke, K. Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kumar, N., Mignuzzi, S., Su, W. & Roy, D. Tip-enhanced Raman spectroscopy: principles and applications. EPJ Tech. Instrum. 2, 1–23 (2015).

    Article 

    Google Scholar
     

  • Collins, B. A. & Ade, H. Quantitative compositional analysis of organic thin films using transmission NEXAFS spectroscopy in an X-ray microscope. J. Electron. Spectrosc. Relat. Phenom. 185, 119–128 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Watts, B. & Ade, H. NEXAFS imaging of synthetic organic materials. Mater. Today 15, 148–157 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Brown, T. D., Kumar, S. & Williams, R. S. Physics-based compact modeling of electro-thermal memristors: negative differential resistance, local activity, and non-local dynamical bifurcations. Appl. Phys. Rev. 9, 011308 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gergel-Hackett, N., Zangmeister, C. D., Hacker, C. A., Richter, L. J. & Richter, C. A. Demonstration of molecular assembly on Si (100) for CMOS-compatible molecule-based electronic devices. J. Am. Chem. Soc. 130, 4259–4261 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skomski, D., Abb, S. & Tait, S. L. Robust surface nano-architecture by alkali–carboxylate ionic bonding. J. Am. Chem. Soc. 134, 14165–14171 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, B. & Kumar, A. Extreme ultraviolet lithography and three dimensional integrated circuit—a review. Appl. Phys. Rev. 1, 011104 (2014).

    Article 

    Google Scholar
     

  •  

    Reference

    Denial of responsibility! TechCodex is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a Comment