Home Computing Efficiency optimization in quantum computing: balancing thermodynamics and computational performance

Efficiency optimization in quantum computing: balancing thermodynamics and computational performance

  • Raymer, M. G. & Monroe, C. The us national quantum initiative. Quantum Sci. Technol. 4, 020504. https://doi.org/10.1088/2058-9565/ab0441 (2019).

    Article 
    ADS 

    Google Scholar
     

  • McMahon, D. Quantum Computing Explained (Wiley, 2007).

    Book 

    Google Scholar
     

  • Nielsen, M. A. & Chuang, I. Quantum computation and quantum information. Phys. Todayhttps://doi.org/10.1017/CBO9780511976667 (2002).

    Article 

    Google Scholar
     

  • Sanders, B. C. How to Build a Quantum Computer 2399–2891 (IOP Publishing, 2017).


    Google Scholar
     

  • Riedel, M., Kovacs, M., Zoller, P., Mlynek, J. & Calarco, T. Europe’s quantum flagship initiative. Quantum Sci. Technol. 4, 020501. https://doi.org/10.1088/2058-9565/ab042d (2019).

    Article 
    ADS 

    Google Scholar
     

  • Yamamoto, Y., Sasaki, M. & Takesue, H. Quantum information science and technology in japan. Quantum Sci. Technol. 4, 020502. https://doi.org/10.1088/2058-9565/ab0077 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sussman, B., Corkum, P., Blais, A., Cory, D. & Damascelli, A. Quantum Canada. Quantum Sci. Technol. 4, 020503. https://doi.org/10.1088/2058-9565/ab029d (2019).

    Article 
    ADS 

    Google Scholar
     

  • Knight, P. & Walmsley, I. Uk national quantum technology programme. Quantum Sci. Technol. 4, 040502. https://doi.org/10.1088/2058-9565/ab4346 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Roberson, T. M. & White, A. G. Charting the Australian quantum landscape. Quantum Sci. Technol. 4, 020505. https://doi.org/10.1088/2058-9565/ab02b4 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ur Rasool, R. et al. Quantum computing for healthcare: A review. Future Internethttps://doi.org/10.3390/fi15030094 (2023).

    Article 

    Google Scholar
     

  • Herman, D. et al. A survey of quantum computing for finance (2022). arXiv:2201.02773.

  • Domino, K. et al. Quantum annealing in the NISQ era: Railway conflict management. Entropyhttps://doi.org/10.3390/e25020191 (2023).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137. https://doi.org/10.1038/30156 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marx, R., Fahmy, A. F., Myers, J. M., Bermel, W. & Glaser, S. J. Realization of a 5-bit nmr quantum computer using a new molecular architecture (1999). arXiv:quant-ph/9905087.

  • Negrevergne, C. et al. Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett. 96, 170501. https://doi.org/10.1103/PhysRevLett.96.170501 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanyon, B. P. et al. Experimental demonstration of a compiled version of shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505. https://doi.org/10.1103/PhysRevLett.99.250505 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tame, M. S. et al. Experimental realization of deutsch’s algorithm in a one-way quantum computer. Phys. Rev. Lett. 98, 140501. https://doi.org/10.1103/PhysRevLett.98.140501 (2007).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198. https://doi.org/10.1038/nature10012 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Saeedi, K. et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833. https://doi.org/10.1126/science.1239584 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510. https://doi.org/10.1038/s41586-019-1666-5 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Unden, T. K., Louzon, D., Zwolak, M., Zurek, W. H. & Jelezko, F. Revealing the emergence of classicality using nitrogen-vacancy centers. Phys. Rev. Lett. 123, 140402. https://doi.org/10.1103/PhysRevLett.123.140402 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, A. Quantum darwinism seen in diamond traps. Science 365, 1070–1070. https://doi.org/10.1126/science.365.6458.1070 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Krutyanskiy, V. et al. Entanglement of trapped-ion qubits separated by 230 meters. Phys. Rev. Lett. 130, 050803. https://doi.org/10.1103/PhysRevLett.130.050803 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassija, V. et al. Present landscape of quantum computing. IET Quantum Commun. 1, 42–48. https://doi.org/10.1049/iet-qtc.2020.0027 (2020).

    Article 

    Google Scholar
     

  • Gyongyosi, L. & Imre, S. A survey on quantum computing technology. Comput. Sci. Rev. 31, 51–71 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • National Academies of Sciences, Engineering, and Medicine, Quantum Computing: Progress and Prospects (Washington, DC: The National Academies Press, 2019).

  • Deffner, S. & Campbell, S. Quantum Thermodynamics 2053–2571 (Morgan & Claypool Publishers, 2019).

    Book 

    Google Scholar
     

  • Auffèves, A. Quantum technologies need a quantum energy initiative. PRX Quantum 3, 020101. https://doi.org/10.1103/PRXQuantum.3.020101 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Elsayed, N., Maida, A. S. & Bayoumi, M. A review of quantum computer energy efficiency. In 2019 IEEE Green Technologies Conference (GreenTech), 1–3, https://doi.org/10.1109/GreenTech.2019.8767125 (IEEE, 2019).

  • Ikonen, J., Salmilehto, J. & Möttönen, M. Energy-efficient quantum computing. npj Quantum Inform. 3, 17. https://doi.org/10.1038/s41534-017-0015-5 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Fellous-Asiani, M. et al. Optimizing resource efficiencies for scalable full-stack quantum computers (2022). arXiv:2209.05469.

  • Likharev, K. K. Classical and quantum limitations on energy consumption in computation. Int. J. Theor. Phys. 21, 311–326. https://doi.org/10.1007/BF01857733 (1982).

    Article 

    Google Scholar
     

  • Gemmer, J., Michel, M. & Mahler, G. Quantum thermodynamics: Emergence of thermodynamic behavior within composite quantum systems Vol. 784 (Springer, 2009).


    Google Scholar
     

  • Vinjanampathy, S. & Anders, J. Quantum thermodynamics. Contemp. Phys. 57, 545–579 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Goold, J., Huber, M., Riera, A., Del Rio, L. & Skrzypczyk, P. The role of quantum information in thermodynamics-a topical review. J. Phys. A: Math. Theor. 49, 143001. https://doi.org/10.1088/1751-8113/49/14/143001 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Binder, F., Correa, L. A., Gogolin, C., Anders, J. & Adesso, G. Thermodynamics in the quantum regime. Fund. Theories Phys. 195, 1–2 (2018).

    ADS 

    Google Scholar
     

  • Gea-Banacloche, J. Minimum energy requirements for quantum computation. Phys. Rev. Lett. 89, 217901. https://doi.org/10.1103/PhysRevLett.89.217901 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bedingham, D. J. & Maroney, O. J. E. The thermodynamic cost of quantum operations. New J. Phys. 18, 113050. https://doi.org/10.1088/1367-2630/18/11/113050 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Cimini, V. et al. Experimental characterization of the energetics of quantum logic gates. npj Quantum Inform. 6, 96. https://doi.org/10.1038/s41534-020-00325-7 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Timpanaro, A. M., Santos, J. P. & Landi, G. T. Landauer’s principle at zero temperature. Phys. Rev. Lett. 124, 240601. https://doi.org/10.1103/PhysRevLett.124.240601 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Deffner, S. Energetic cost of hamiltonian quantum gates. EPL (Europhys. Lett.) 134, 40002. https://doi.org/10.1209/0295-5075/134/40002 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lamm, H. & Lawrence, S. Simulation of nonequilibrium dynamics on a quantum computer. Phys. Rev. Lett. 121, 170501. https://doi.org/10.1103/PhysRevLett.121.170501 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chertkov, E. et al. Characterizing a non-equilibrium phase transition on a quantum computer (2022). arXiv:2209.12889.

  • Meier, F. & Yamasaki, H. Energy-consumption advantage of quantum computation (2023). arXiv:2305.11212.

  • Gardas, B. & Deffner, S. Thermodynamic universality of quantum Carnot engines. Phys. Rev. E 92, 042126. https://doi.org/10.1103/PhysRevE.92.042126 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gardas, B., Deffner, S. & Saxena, A. \(\cal{PT} \)-symmetric slowing down of decoherence. Phys. Rev. A 94, 040101. https://doi.org/10.1103/PhysRevA.94.040101 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gardas, B., Dziarmaga, J., Zurek, W. H. & Zwolak, M. Defects in quantum computers. Sci. Rep. 8, 4539 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardas, B. & Deffner, S. Quantum fluctuation theorem for error diagnostics in quantum annealers. Sci. Rep. 8, 17191 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mzaouali, Z., Puebla, R., Goold, J., El Baz, M. & Campbell, S. Work statistics and symmetry breaking in an excited-state quantum phase transition. Phys. Rev. E 103, 032145. https://doi.org/10.1103/PhysRevE.103.032145 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Soriani, A., Nazé, P., Bonança, M. V. S., Gardas, B. & Deffner, S. Three phases of quantum annealing: Fast, slow, and very slow. Phys. Rev. A 105, 042423. https://doi.org/10.1103/PhysRevA.105.042423 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Soriani, A., Nazé, P., Bonança, M. V. S., Gardas, B. & Deffner, S. Assessing the performance of quantum annealing with nonlinear driving. Phys. Rev. A 105, 052442. https://doi.org/10.1103/PhysRevA.105.052442 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Coopmans, L., Campbell, S., De Chiara, G. & Kiely, A. Optimal control in disordered quantum systems. Phys. Rev. Res. 4, 043138. https://doi.org/10.1103/PhysRevResearch.4.043138 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kazhybekova, A., Campbell, S. & Kiely, A. Minimal action control method in quantum critical models. J. Phys. Commun. 6, 113001. https://doi.org/10.1088/2399-6528/aca3fa (2022).

    Article 

    Google Scholar
     

  • Xuereb, J., Campbell, S., Goold, J. & Xuereb, A. Deterministic quantum computation with one-clean-qubit model as an open quantum system. Phys. Rev. A 107, 042222. https://doi.org/10.1103/PhysRevA.107.042222 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Carolan, E., Çakmak, B. & Campbell, S. Robustness of controlled hamiltonian approaches to unitary quantum gates (2023). arXiv:2304.14667.

  • Kiely, A., O’Connor, E., Fogarty, T., Landi, G. T. & Campbell, S. Entropy of the quantum work distribution. Phys. Rev. Res. 5, L022010. https://doi.org/10.1103/PhysRevResearch.5.L022010 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zawadzki, K., Kiely, A., Landi, G. T. & Campbell, S. Non-gaussian work statistics at finite-time driving. Phys. Rev. A 107, 012209. https://doi.org/10.1103/PhysRevA.107.012209 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Buffoni, L. & Campisi, M. Thermodynamics of a quantum annealer. Quantum Sci. Technol. 5, 035013. https://doi.org/10.1088/2058-9565/ab9755 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363. https://doi.org/10.1103/PhysRevE.58.5355 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002. https://doi.org/10.1103/RevModPhys.90.015002 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Golden, J. & O’Malley, D. Reverse annealing for nonnegative/binary matrix factorization. PLoS One 16, e0244026 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venturelli, D. & Kondratyev, A. Reverse quantum annealing approach to portfolio optimization problems. Quantum Mach. Intell. 1, 17–30 (2019).

    Article 

    Google Scholar
     

  • Yarkoni, S., Raponi, E., Bäck, T. & Schmitt, S. Quantum annealing for industry applications: Introduction and review (Rep. Prog, Phys, 2022).

  • Campisi, M. & Buffoni, L. Improved bound on entropy production in a quantum annealer. Phys. Rev. E 104, L022102. https://doi.org/10.1103/PhysRevE.104.L022102 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Jarzynski, C. & Wójcik, D. K. Classical and quantum fluctuation theorems for heat exchange. Phys. Rev. Lett. 92, 230602. https://doi.org/10.1103/PhysRevLett.92.230602 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sone, A., Soares-Pinto, D. O. & Deffner, S. Exchange fluctuation theorems for strongly interacting quantum pumps. AVS Quantum Sci. 5, 032001. https://doi.org/10.1116/5.0152186 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Deffner, S. & Lutz, E. Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404. https://doi.org/10.1103/PhysRevLett.107.140404 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Touil, A. & Deffner, S. Information scrambling versus decoherence–two competing sinks for entropy. PRX Quantum 2, 010306. https://doi.org/10.1103/PRXQuantum.2.010306 (2021).

    Article 

    Google Scholar
     

  • McGeoch, C. & Farré, P. Advantage processor overview. Tech. Rep. 14-1058A-A, D-Wave Quantum Inc. (2022).

  • Uffink, J. & Van Lith, J. Thermodynamic uncertainty relations. Found. Phys. 29, 655–692 (1999).

    Article 
    MathSciNet 

    Google Scholar
     

  • Benedetti, M., Realpe-Gómez, J., Biswas, R. & Perdomo-Ortiz, A. Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning. Phys. Rev. A 94, 022308. https://doi.org/10.1103/PhysRevA.94.022308 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qpu-specific physical properties: Dw_2000q_6. Tech. Rep. D-Wave User Manual 09-1215A-D, D-Wave Quantum Inc. (2022).

  • Mossel, E. & Sly, A. Exact thresholds for Ising–Gibbs samplers on general graphs. Ann. Probab. 41, 294–328. https://doi.org/10.1214/11-AOP737 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • Chen, H. & Lidar, D. A. Why and when pausing is beneficial in quantum annealing. Phys. Rev. Appl. 14, 014100. https://doi.org/10.1103/PhysRevApplied.14.014100 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marshall, J., Venturelli, D., Hen, I. & Rieffel, E. G. Power of pausing: Advancing understanding of thermalization in experimental quantum annealers. Phys. Rev. Appl. 11, 044083. https://doi.org/10.1103/PhysRevApplied.11.044083 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gonzalez Izquierdo, Z. et al. Advantage of pausing: Parameter setting for quantum annealers. Phys. Rev. Appl. 18, 054056. https://doi.org/10.1103/physrevapplied.18.054056 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Watabe, S., Seki, Y. & Kawabata, S. Enhancing quantum annealing performance by a degenerate two-level system. Sci. Rep. 10, 146 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smierzchalski, T., Mzaouali, Z. & Gardas, B. Dwave-thermodynamics.

  •  

    Reference

    Denial of responsibility! TechCodex is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a Comment