Home Computing A versatile single-photon-based quantum computing platform

A versatile single-photon-based quantum computing platform

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Q. et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. 67, 240–245 (2022).

    Article 

    Google Scholar
     

  • Moses, S. A. et al. A race-track trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).

    CAS 

    Google Scholar
     

  • Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, H.-S. et al. Phase-programmable gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal blind quantum computation. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science 517–526 (IEEE, 2009).

  • Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y., Humphreys, P. C., Mendoza, G. J. & Benjamin, S. C. Resource costs for fault-tolerant linear optical quantum computing. Phys. Rev. X 5, 041007 (2015).


    Google Scholar
     

  • Auger, J. M., Anwar, H., Gimeno-Segovia, M., Stace, T. M. & Browne, D. E. Fault-tolerant quantum computation with nondeterministic entangling gates. Phys. Rev. A 97, 030301 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bartolucci, S. et al. Fusion-based quantum computation. Nat. Commun. 14, 912 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vigliar, C. et al. Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bao, J. et al. Very-large-scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023).

  • Bombin, H. et al. Interleaving: modular architectures for fault-tolerant photonic quantum computing. Preprint at https://arxiv.org/abs/2103.08612 (2021).

  • Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photon. 13, 770–775 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Coste, N. et al. High-rate entanglement between a semiconductor spin and indistinguishable photons. Nat. Photon. 17, 582–587 (2023).

  • Gimeno-Segovia, M., Shadbolt, P., Browne, D. E. & Rudolph, T. From three-photon Greenberger–Horne–Zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett. 115, 020502 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Quandela Cloud. Quandela https://cloud.quandela.com (2022).

  • Thomas, S. E. et al. Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126, 233601 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pont, M. et al. High-fidelity generation of four-photon ghz states on-chip. Preprint at https://arxiv.org/abs/2211.15626 (2022).

  • Taballione, C. et al. A universal fully reconfigurable 12-mode quantum photonic processor. Mater. Quantum Technol. 1, 035002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Pont, M. et al. Quantifying n-photon indistinguishability with a cyclic integrated interferometer. Phys. Rev. X 12, 031033 (2022).

    CAS 

    Google Scholar
     

  • Heurtel, N. et al. Perceval: a software platform for discrete variable photonic quantum computing. Quantum 7, 931 (2023).

    Article 

    Google Scholar
     

  • Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen, M. A & Chuang, I. Quantum Computation and Quantum Information (Massachusetts Institute of Technology, 2002).

  • Magesan, E., Gambetta, J. M. & Emerson, J. Characterizing quantum gates via randomized benchmarking. Phys. Rev. A 85, 042311 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dankert, C., Cleve, R., Emerson, J. & Livine, E. Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 80, 012304 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Clément, A., Heurtel, N., Mansfield, S., Perdrix, S. & Valiron, B. LOv-Calculus: a graphical language for linear optical quantum circuits. In Proc. 47th International Symposium on Mathematical Foundations of Computer Science (MFCS) Vol. 241 (Eds Szeider, S. et al.) 35:1–35:16 (Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2002).

  • Mohseni, M., Rezakhani, A. T. & Lidar, D. A. Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A 77, 032322 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Crespi, A. et al. Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Supercompact photonic quantum logic gate on a silicon chip. Phys. Rev. Let. 126, 130501 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, M. et al. On-chip path encoded photonic quantum toffoli gate. Photon. Res. 10, 1533–1542 (2022).

    Article 

    Google Scholar
     

  • Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bravyi, S., Gambetta, J. M, Mezzacapo, A. & Temme, K. Tapering off qubits to simulate fermionic hamiltonians. Preprint at https://arxiv.org/abs/1701.08213 (2017).

  • McClean, J. R. et al. Openfermion: the electronic structure package for quantum computers. Quantum Sci. Technol. 5, 034014 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lee, D. et al. Error-mitigated photonic variational quantum eigensolver using a single-photon ququart. Optica 9, 88–95 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Variational quantum eigensolver with reduced circuit complexity. npj Quantum Inf. 8, 96 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nam, Y. et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Inf. 6, 33 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Goings, J., Zhao, L., Jakowski, J., Morris, T. & Pooser, R. Molecular symmetry in VQE: a dual approach for trapped-ion simulations of benzene. Preprint at https://arxiv.org/abs/230 (2023).

  • McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 023023 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gan, B. Y., Leykam, D. & Angelakis, D. G. Fock state-enhanced expressivity of quantum machine learning models. EPJ Quantum Technol. 9, 16 (2022).

    Article 

    Google Scholar
     

  • Fisher, R. A. The use of multiple measurements in taxonomic problems. Ann. Eugenic. 7, 179–188 (1936).

  • Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bartkiewicz, K. et al. Experimental kernel-based quantum machine learning in finite feature space. Sci. Rep. 10, 12356 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. 43rd Annual ACM Symposium on Theory of Computing 333–342 (ACM, 2011).

  • Zhong, H.-S. et al. 12-Photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Jun et al. Experimental collision-free dominant boson sampling. Preprint at https://arxiv.org/abs/1910.11320 (2019).

  • Hoch, F. et al. Reconfigurable continuously-coupled 3D photonic circuit for boson sampling experiments. npj Quantum Inf. 8, 55 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Aaronson, S. & Arkhipov, A. Bosonsampling is far from uniform. Quantum Info. Comput. 14, 1383–1423 (2014).

    MathSciNet 

    Google Scholar
     

  • Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Toward scalable boson sampling with photon loss. Phys. Rev. Lett. 120, 230502 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, B.-Y., Denning, E. V., Gür, U. M., Lu, C.-Y. & Gregersen, N. Micropillar single-photon source design for simultaneous near-unity efficiency and indistinguishability. Phys. Rev. B 102, 125301 (2020).

  • Ralph, T. C., Langford, N. K., Bell, T. B. & White, A. G. Linear optical controlled-not gate in the coincidence basis. Phys. Rev. A 65, 062324 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Maring, N. et al. One nine availability of a photonic quantum computer on the cloud toward HPC integration. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) Vol. 2, 112–116 (IEEE, 2023).

  • Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gouriou, C. Design and Fabrication of an Integrated Photonic Circuit for Producing a Maximally-Entangled Three-Photon State. Politecnico di Milano. MSc Thesis, Polytecnico Milano (2019).

  • Paesani, S. & Brown, B. J. High-threshold quantum computing by fusing one-dimensional cluster states. Phys. Rev. Lett. 131, 120603 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kieling, K., O’Brien, J. L. & Eisert, J. On photonic controlled phase gates. New J. Phys. 12, 013003 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Roeloffzen, C. G. H. et al. Low-loss Si3N4 triplex optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018).

  • Burgwal, R. et al. Using an imperfect photonic network to implement random unitaries. Opt. Express 25, 28236–28245 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Russell, N. J., Chakhmakhchyan, L., O’Brien, J. L. & Laing, A. Direct dialling of haar random unitary matrices. New J. Phys. 19, 033007 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Hein, M. et al. Entanglement in graph states and its applications. In Proceedings of the International School of Physics “Enrico Fermi” 115–218 (IOS Press, 2006).

  • Cao, H. et al. A photonic source of heralded GHZ states. Preprint at https://arxiv.org/abs/2308.05709 (2023).

  • Chen, S. et al. Heralded three-photon entanglement from a single-photon source on a photonic chip. Preprint at https://arxiv.org/abs/2307.02189 (2023).

  •  

    Reference

    Denial of responsibility! TechCodex is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a Comment