Home Computing Neuro-computing solution for Lorenz differential equations through artificial neural networks integrated with PSO-NNA hybrid meta-heuristic algorithms: a comparative study

Neuro-computing solution for Lorenz differential equations through artificial neural networks integrated with PSO-NNA hybrid meta-heuristic algorithms: a comparative study

  • Kudryashov, N. A. Analytical solutions of the Lorenz system. Regul. Chaotic Dyn. 20(2), 123–133. https://doi.org/10.1134/S1560354715020021 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bougoffa, L., Al-Awfi, S. & Bougouffa, S. A complete and partial integrability technique of the Lorenz system. Res. Phys. 9, 712–716. https://doi.org/10.1016/j.rinp.2018.03.031 (2018).

    Article 

    Google Scholar
     

  • Algaba, A., Fernández-Sánchez, F., Merino, M. & Rodríguez-Luis, A. J. Analysis of the T-point-Hopf bifurcation in the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 676–691. https://doi.org/10.1016/j.cnsns.2014.09.025 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Barrio, R. & Serrano, S. Bounds for the chaotic region in the Lorenz model. Phys. D Nonlinear Phenom. 238(16), 1615–1624. https://doi.org/10.1016/j.physd.2009.04.019 (2009).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Algaba, A., Fernández-Sánchez, F., Merino, M. & Rodríguez-Luis, A. J. Centers on center manifolds in the Lorenz, Chen and Lü systems. Commun. Nonlinear Sci. Numer. Simul. 19(4), 772–775. https://doi.org/10.1016/j.cnsns.2013.08.003 (2014).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Köse, E., & Mühürcü, A. Comparative controlling of the Lorenz chaotic system using the SMC and APP methods. Math. Probl. Eng. https://doi.org/10.1155/2018/9612749 (2018).

  • Poland, D. Cooperative catalysis and chemical chaos: A chemical model for the Lorenz equations. Phys. D Nonlinear Phenom. 65(1–2), 86–99. https://doi.org/10.1016/0167-2789(93)90006-M (1993).

    Article 
    ADS 

    Google Scholar
     

  • Wu, K. & Zhang, X. Darboux polynomials and rational first integrals of the generalized Lorenz systems. Bull. des Sci. Math. 136(3), 291–308. https://doi.org/10.1016/j.bulsci.2011.11.005 (2012).

    Article 
    MathSciNet 

    Google Scholar
     

  • Algaba, A., Domínguez-Moreno, M. C., Merino, M. & Rodríguez-Luis, A. J. Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 111, 106482. https://doi.org/10.1016/j.cnsns.2022.106482 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Wu, K. & Zhang, X. Global dynamics of the generalized Lorenz systems having invariant algebraic surfaces. Phys. D Nonlinear Phenom. 244(1), 25–35. https://doi.org/10.1016/j.physd.2012.10.011 (2013).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Doedel, E. J., Krauskopf, B. & Osinga, H. M. Global invariant manifolds in the transition to preturbulence in the Lorenz system. Indag. Math. 22(3–4), 222–240. https://doi.org/10.1016/j.indag.2011.10.007 (2011).

    Article 
    MathSciNet 

    Google Scholar
     

  • Wu, G., Tang, L. & Liang, J. Synchronization of non-smooth chaotic systems via an improved reservoir computing. Sci. Rep. 14(1), 1–13 (2024).

    ADS 

    Google Scholar
     

  • Sen, T. & Tabor, M. Lie symmetries of the Lorenz model. Phys. D Nonlinear Phenom. 44(3), 313–339. https://doi.org/10.1016/0167-2789(90)90152-F (1990).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Alexeev, I. Lorenz system in the thermodynamic modelling of leukaemia malignancy. Med. Hypotheses 102, 150–155. https://doi.org/10.1016/j.mehy.2017.03.027 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Leonov, G. A., Kuznetsov, N. V., Korzhemanova, N. A. & Kusakin, D. V. Lyapunov dimension formula for the global attractor of the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 41, 84–103. https://doi.org/10.1016/j.cnsns.2016.04.032 (2016).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Krishnan, S. S., & Malathy, S. Solving lorenz system of equation by Laplace homotopy analysis method. In Proceedings of the First International Conference on Combinatorial and Optimization, ICCAP 2021, December 7–8 2021, Chennai, India (2021).

  • Zlatanovska, B. & Piperevski, B. A particular solution of the third-order shortened Lorenz system via integrability of a class of differential equations. Asian-Eur. J. Math. 15, 10 (2022).

    MathSciNet 

    Google Scholar
     

  • Klöwer, M., Coveney, P. V., Paxton, E. A. & Palmer, T. N. Periodic orbits in chaotic systems simulated at low precision. Sci. Rep. 13(1), 1–13 (2023).

    Article 

    Google Scholar
     

  • Yang, L., Zhang, D. & Karniadakis, G. E. M. Physics-informed generative adversarial networks for stochastic differential equations. SIAM J. Sci. Comput. 42(1), A292–A317. https://doi.org/10.1137/18M1225409 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Raissi, M. Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations, pp. 1–17 (2018) [Online]. http://arxiv.org/abs/1804.07010.

  • Mattheakis, M., Sondak, D., Dogra, A. S. & Protopapas, P. Hamiltonian neural networks for solving equations of motion. Phys. Rev. E 105(6), 1. https://doi.org/10.1103/PhysRevE.105.065305 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Mattheakis, M., Protopapas, P., Sondak, D., Di Giovanni, M., & Kaxiras, E. Physical symmetries embedded in neural networks, pp. 1–16 [Online]. Available: http://arxiv.org/abs/1904.08991 (2019).

  • Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Piscopo, M. L., Spannowsky, M. & Waite, P. Solving differential equations with neural networks: Applications to the calculation of cosmological phase transitions. Phys. Rev. D 100(1), 16002. https://doi.org/10.1103/physrevd.100.016002 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Hagge, T., Stinis, P., Yeung, E., & Tartakovsky, A. M. Solving differential equations with unknown constitutive relations as recurrent neural networks (2017). Available: http://arxiv.org/abs/1710.02242

  • Han, J., Jentzen, A. & Weinan, E. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. U. S. A. 115(34), 8505–8510. https://doi.org/10.1073/pnas.1718942115 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, J. A., Raja, M. A. Z. & Qureshi, I. M. Stochastic computational approach for complex nonlinear ordinary differential equations. Chin. Phys. Lett. 28, 206 (2011).

    Article 

    Google Scholar
     

  • Aslam, M. N., Riaz, A., Shaukat, N., Aslam, M. W. & Alhamzi, G. Machine learning analysis of heat transfer and electroosmotic effects on multiphase wavy flow: A numerical approach. Int. J. Numer Methods Heat Fluid Flow. 1, 1 (2023).


    Google Scholar
     

  • Aslam, M. N. et al. An ANN-PSO approach for mixed convection flow in an inclined tube with Ciliary motion of Jeffrey six constant fluid. Case Stud. Therm. Eng. 103, 740 (2023).


    Google Scholar
     

  • Khan, J. A., Raja, M. A. Z. & Qureshi, I. M. Novel approach for van der Pol oscillator on the continuous time domain. Chin. Phys. Lett. 28, 110205 (2011).

    Article 

    Google Scholar
     

  • Khan, J. A., Raja, M. A. Z. & Qureshi, I. M. Numerical treatment of nonlinear Emden-Fowler equation using stochastic technique. Ann. Math. Artif. Intell. 63, 185–207 (2011).

    Article 
    MathSciNet 

    Google Scholar
     

  • Raja, M. A. Z. Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimized with PSO and SQP. Connect. Sci. 26, 195–214 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Raja, M. A. Z. & Ahmad, S. I. Numerical treatment for solving one-dimensional Bratu problem using neural networks. Neural Comput. Appl. 24, 549–561 (2014).

    Article 

    Google Scholar
     

  • Raja, M. A. Z., Ahmad, S. I. & Raza, S. Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neural Comput. Appl. 23, 2199–2210 (2013).

    Article 

    Google Scholar
     

  • Raja, M. A. Z., Samar, R. & Rashidi, M. M. Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neural Comput. Appl. 25, 1585–1601 (2014).

    Article 

    Google Scholar
     

  • Raja, M. A. Z., Ahmad, S. I. & Raza, S. Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neural Comput. Appl. 25, 1723–1739 (2014).

    Article 

    Google Scholar
     

  • Raja, M. A. Z., Sabir, Z., Mahmood, N., Eman, S. A. & Khan, A. I. Design of Stochastic solvers based on variants of genetic algorithms for solving nonlinear equations. Neural Comput. Appl. 26, 1–23 (2015).

    Article 

    Google Scholar
     

  • Raja, M. A. Z. & Samar, R. Numerical treatment for nonlinear MHD Jeffery-Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing 124, 178–193 (2014).

    Article 

    Google Scholar
     

  • Raja, M. A. Z. & Samar, R. Numerical treatment of nonlinear MHD Jeffery-Hamel problems using stochastic algorithms. Comput. Fluids 91, 28–46 (2014).

    Article 
    MathSciNet 

    Google Scholar
     

  • Raja, M. A. Z., Khan, J. A. & Haroon, T. Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J. Chem. Inst. Taiwan 48, 26–39 (2014).

    Article 

    Google Scholar
     

  • Raja, M. A. Z. Stochastic numerical techniques for solving Troesch’s Problem. Inf. Sci. 279, 860–873 (2014).

    Article 

    Google Scholar
     

  • Raja, M. A. Z. Unsupervised neural networks for solving Troesch’s problem. Chin. Phys. B 23, 018903 (2014).

    Article 

    Google Scholar
     

  • Bukhari, A. H., Raja, M. A. Z., Shoaib, M. & Kiani, A. K. Fractional order Lorenz based physics informed SARFIMA-NARX model to monitor and mitigate megacities air pollution. Chaos Solitons Fract. 161(112375), 112375 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Long, Z., Lu, Y., Ma, X., & Dong, B. PDE-Net: Learning PDEs from data. In Proc. Mach. Learn. Res., pp. 3208–3216 (2018).

  • Long, Z., Lu, Y. & Dong, B. PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bukhari, A. H. et al. Dynamical analysis of nonlinear fractional order Lorenz system with a novel design of intelligent solution predictive radial base networks. Math. Comput. Simul. 213, 324–347 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Li, Q. & Evje, S. Learning the nonlinear flux function of a hidden scalar conservation law from data. Netw. Heterogeneous Media 18(1), 48–79 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Raja, M. A. Z. Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Conn. Sci. 26(3), 195–214 (2014).

    Article 
    MathSciNet 

    Google Scholar
     

  • Lee, K. & Parish, E. J. Parameterized neural ordinary differential equations: Applications to computational physics problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 477(53), 162 (2021).

    MathSciNet 

    Google Scholar
     

  • Shimizu, Y. S. & Parish, E. J. Windowed space–time least-squares Petrov-Galerkin model order reduction for nonlinear dynamical systems. Comput. Methods Appl. Mech. Eng. 386, 114050 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Lee, K., & Trask, N. Parameter-varying neural ordinary differential equations with partition-of-unity networks (2022). arXiv:2210.00368.

  • Owhadi, H. ‘Bayesian numerical homogenization’. Multiscale Model. Simul. 13(3), 812–828 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Raissi, M., Perdikaris, P. & Karniadakis, G. E. ‘Inferring solutions of differential equations using noisy multi-fidelity data’. J. Comput. Phys. 335, 736–746 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Raissi, M., Perdikaris, P. & Karniadakis, G. E. ‘Machine learning of linear differential equations using Gaussian processes’. J. Comput. Phys. 348, 683–693 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Brunton, S. L., Proctor, J. L. & Kutz, J. N. ‘Discovering governing equations from data by sparse identification of nonlinear dynamical systems’. Proc. Nat. Acad. Sci. USA 113(15), 3932–3937 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panda, S. & Padhy, N. P. Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput. J. 8(4), 1418–1427. https://doi.org/10.1016/j.asoc.2007.10.009 (2008).

    Article 

    Google Scholar
     

  • Okwu, M. O. & Tartibu, L. K. Particle swarm optimisation. Stud. Comput. Intell. 927, 5–13. https://doi.org/10.1007/978-3-030-61111-8_2 (2021).

    Article 

    Google Scholar
     

  • Yu, Y., & Yin, S. A comparison between generic algorithm and particle swarm optimization. In ACM Int. Conf. Proceeding Ser., pp. 137–139. https://doi.org/10.1145/3429889.3430294 (2020).

  • Stacey, A., Jancic, M., & Grundy, I. Particle swarm optimization with mutation. In 2003 Congr. Evol. Comput. CEC 2003 – Proc., vol. 2, pp. 1425–1430. https://doi.org/10.1109/CEC.2003.1299838 (2003).

  • Eberhart, R. & Kennedy, J. New optimizer using particle swarm theory. Proc. Int. Symp. Micro Mach. Hum. Sci. 1, 39–43. https://doi.org/10.1109/mhs.1995.494215 (1995).

    Article 

    Google Scholar
     

  • Toushmalani, R. Gravity inversion of a fault by Particle swarm optimization (PSO). Springerplus 2(1), 1–7. https://doi.org/10.1186/2193-1801-2-315 (2013).

    Article 

    Google Scholar
     

  • Bassi, Mishra, & Omizegba. Automatic tuning of proportional-integral-derivative (Pid) controller using particle swarm optimization (Pso) algorithm. Int. J. Artif. Intell. Appl. 2(4), 25–34. https://doi.org/10.5121/ijaia.2011.2403 (2011).

  • Esmin, A. A. A., Coelho, R. A. & Matwin, S. A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data. Artif. Intell. Rev. 44(1), 23–45. https://doi.org/10.1007/s10462-013-9400-4 (2015).

    Article 

    Google Scholar
     

  • Rana, S., Jasola, S. & Kumar, R. A review on particle swarm optimization algorithms and their applications to data clustering. Artif. Intell. Rev. 35(3), 211–222. https://doi.org/10.1007/s10462-010-9191-9 (2011).

    Article 

    Google Scholar
     

  • Ibrahim, A. M. & Tawhid, M. A. A hybridization of cuckoo search and particle swarm optimization for solving nonlinear systems. Evol. Intell. 12(4), 541–561. https://doi.org/10.1007/s12065-019-00255-0 (2019).

    Article 

    Google Scholar
     

  • He, Q., Wang, L. & Liu, B. Parameter estimation for chaotic systems by particle swarm optimization. Chaos Solitons Fract. 34(2), 654–661. https://doi.org/10.1016/j.chaos.2006.03.079 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Alatas, B., Akin, E. & Ozer, A. B. Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fract. 40(4), 1715–1734. https://doi.org/10.1016/j.chaos.2007.09.063 (2009).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Babazadeh, D., Boroushaki, M. & Lucas, C. Optimization of fuel core loading pattern design in a VVER nuclear power reactors using Particle Swarm Optimization (PSO). Ann. Nucl. Energy 36(7), 923–930. https://doi.org/10.1016/j.anucene.2009.03.007 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Subbaraj, P. & Rajnarayanan, P. N. Hybrid particle swarm optimization based optimal reactive power dispatch. Int. J. Comput. Appl. 1(5), 79–85. https://doi.org/10.5120/121-236 (2010).

    Article 

    Google Scholar
     

  • Jiang, A., Osamu, Y. & Chen, L. Multilayer optical thin film design with deep Q learning. Sci. Rep. 10(1), 1–7. https://doi.org/10.1038/s41598-020-69754-w (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yue, C., Qin, Z., Lang, Y. & Liu, Q. Determination of thin metal film’s thickness and optical constants based on SPR phase detection by simulated annealing particle swarm optimization. Opt. Commun. 430, 238–245. https://doi.org/10.1016/j.optcom.2018.08.051 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rabady, R. I. & Ababneh, A. Global optimal design of optical multilayer thin-film filters using particle swarm optimization. Optik (Stuttg) 125(1), 548–553. https://doi.org/10.1016/j.ijleo.2013.07.028 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ruan, Z. H., Yuan, Y., Zhang, X. X., Shuai, Y. & Tan, H. P. Determination of optical properties and thickness of optical thin film using stochastic particle swarm optimization. Sol. Energy 127, 147–158. https://doi.org/10.1016/j.solener.2016.01.027 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sadollah, A., Sayyaadi, H. & Yadav, A. A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm. Appl. Soft Comput. 71, 747–782. https://doi.org/10.1016/j.asoc.2018.07.039 (2018).

    Article 

    Google Scholar
     

  •  

    Reference

    Denial of responsibility! TechCodex is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a Comment