Scientists offer new theory on how plants can orchestrate the rhythms of light


Credit: CC0 Public Domain

A team of scientists led by Oak Ridge National Laboratory has developed a theory that thylakoids, membrane networks key to plant photosynthesis, also function as a defense mechanism to harsh growing conditions, which could aid the development of hardier plants.

Thylakoids contain grana, structures resembling stacked coins that expand and contract when water flows in and out, like the bellows of an accordion. The action mirrors the movement of guard cells, structures on plant leaves that act like accordion buttons, allowing carbon dioxide in and water vapor out.

These structures harmonize the flow of electrons with carbon uptake during photosynthesis. Scientists have questioned why such a complicated network exists in hardier plants. ORNL researchers theorize that it helps plants tolerate fluctuating conditions such as too little or too much water and sunlight.

The theory was developed as scientists studied large-scale photosynthesis and will help refine global carbon cycling models, said ORNL’s Lianhong Gu.

Unlocking better soil carbon sequestration by studying silicon deposits in plants

More information:
Lianhong Gu et al, Granal thylakoid structure and function: explaining an enduring mystery of higher plants, New Phytologist (2022). DOI: 10.1111/nph.18371

Provided by
Oak Ridge National Laboratory

Scientists offer new theory on how plants can orchestrate the rhythms of light (2022, August 1)
retrieved 1 August 2022

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



Read original article here

Denial of responsibility! TechCodex is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More