Hydrodynamic model of fish orientation in a channel flow


Credit: Unsplash/CC0 Public Domain

For over a century, scientists have sought to understand how fish orient against an incoming flow, even without visual and flow cues. In a study published in eLife, researchers explore a potential hydrodynamic mechanism of fish rheotaxis—movement away or toward water currents—through the study of the bidirectional coupling between fish and the surrounding fluid.

The researchers point out that a major contribution of the proposed model is the treatment of the fish as an invasive sensor that both reacts to and influences the background flow, thereby establishing a coupled interaction between the fish and the surrounding environment.

By modeling a fish as a vortex dipole, a jet flow with a system of two vortices, in an infinite channel with an imposed background flow, they established a dynamical system that captures the existence of a critical flow speed for fish to successfully orient while performing cross-stream, periodic sweeping movements.

The researchers juxtaposed their models with experimental observations in the literature on the rheotactic behavior of fish deprived of visual and lateral line cues. The crucial role of bidirectional hydrodynamic interactions unveiled by this model points at an overlooked limitation of existing experimental paradigms to study rheotaxis in the laboratory.

Fish in schools can take it easy

More information:
Maurizio Porfiri et al, Hydrodynamic model of fish orientation in a channel flow, eLife (2022). DOI: 10.7554/eLife.75225

Journal information:

Provided by
NYU Tandon School of Engineering

Hydrodynamic model of fish orientation in a channel flow (2022, June 10)
retrieved 10 June 2022
from https://phys.org/news/2022-06-hydrodynamic-fish-channel.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



Read original article here

Denial of responsibility! TechCodex is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More