Home Artificial Intelligence Boosting-based ensemble machine learning models for predicting unconfined compressive strength of geopolymer stabilized clayey soil

Boosting-based ensemble machine learning models for predicting unconfined compressive strength of geopolymer stabilized clayey soil

  • Zou, S. et al. Research on improving comprehensive properties of a new sawdust composite insulation material by torrefaction. Process Saf. Environ. Prot. 152, 361–374 (2021).

    Article 

    Google Scholar
     

  • Shaikh, F. U. A., Fairchild, A. & Zammar, R. Comparative strain and deflection hardening behaviour of polyethylene fibre reinforced ambient air and heat cured geopolymer composites. Constr. Build. Mater. 163, 890–900 (2018).

    Article 

    Google Scholar
     

  • Ren, B. et al. Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere 267, 128900 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fakhrabadi, A. et al. Evaluating the durability, microstructure and mechanical properties of a clayey-sandy soil stabilized with copper slag-based geopolymer against wetting-drying cycles. Bull. Eng. Geol. Environ. 80, 5031–5051 (2021).

    Article 

    Google Scholar
     

  • Al-Dossary, A. A. et al. Performance enhancement of road base material using calcium carbide residue and sulfonic acid dilution as a geopolymer stabilizer. Constr. Build. Mater. 364, 129959 (2023).

    Article 

    Google Scholar
     

  • Salas, D. A. et al. Life cycle assessment of geopolymer concrete. Constr. Build. Mater. 190, 170–177 (2018).

    Article 

    Google Scholar
     

  • Ghadir, P. et al. Shear strength and life cycle assessment of volcanic ash-based geopolymer and cement stabilized soil: A comparative study. Transport. Geotech. 31, 100639 (2021).

    Article 

    Google Scholar
     

  • Soleimani, S. et al. New prediction models for unconfined compressive strength of geopolymer stabilized soil using multi-gen genetic programming. Measurement 113, 99–107 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zeini, H. A. et al. Random forest algorithm for the strength prediction of geopolymer stabilized clayey soil. Sustainability 15(2), 1408 (2023).

    Article 

    Google Scholar
     

  • Khademi, F. & Budiman, J. Expansive soil: causes and treatments. i-Manage. J. Civ. Eng. 6(3), 1 (2016).


    Google Scholar
     

  • Abdila, S. R. et al. Potential of soil stabilization using ground granulated blast furnace slag (GGBFS) and fly ash via geopolymerization method: A review. Materials 15(1), 375 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, Z. et al. Study on triaxial creep test and constitutive model of compacted red clay. Int. J. Civ. Eng. 19, 517–531 (2021).

    Article 

    Google Scholar
     

  • Emarah, D. A. & Seleem, S. A. Swelling soils treatment using lime and sea water for roads construction. Alex. Eng. J. 57(4), 2357–2365 (2018).

    Article 

    Google Scholar
     

  • Di Sante, M. et al. Lime treatment of a soft sensitive clay: A sustainable reuse option. Geosciences 10(5), 182 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Salimi, M. & Ghorbani, A. Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers. Appl. Clay Sci. 184, 105390 (2020).

    Article 

    Google Scholar
     

  • Phummiphan, I. et al. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. J. Hazard. Mater. 341, 257–267 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Martins, A. C. P. et al. Steel slags in cement-based composites: An ultimate review on characterization, applications and performance. Construct. Build. Mater. 291, 123265 (2021).

    Article 

    Google Scholar
     

  • Sharma, A. K. & Sivapullaiah, P. Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils Found. 56(2), 205–212 (2016).

    Article 

    Google Scholar
     

  • Alam, S., Das, S. K. & Rao, B. H. Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material. Construct. Build. Mater. 211, 932–942 (2019).

    Article 

    Google Scholar
     

  • Jangid, A. K. et al. Stabilization of black cotton soil by 15% Kota stone slurry with wooden saw dust. Int. J. Adv. Res. Sci. Eng. 7(2), 108–114 (2018).


    Google Scholar
     

  • Saini, H. et al. Stabilization of black cotton soil by using sugarcane bagasse ash. Int. J. Sci. Res. Rev. 7(01), 128–132 (2019).


    Google Scholar
     

  • Jangid, A. et al. Stabilization of black cotton soil by 15% Kota stone slurry with Recron 3s fibre. Int. J. Adv. Res. Sci. and Eng. 7(2), 102–107 (2018).


    Google Scholar
     

  • Abdullah, H. H. & Shahin, M. A. Strength characteristics of clay stabilized with fly-ash based geopolymer incorporating granulated slag. In Proceedings of the 4th World Congress on Civil, Structural, and Environmental Engineering; 2019.

  • Rios, S. et al. Colombian soil stabilized with geopolymers for low cost roads. Proced. Eng. 143, 1392–1400 (2016).

    Article 

    Google Scholar
     

  • Ahmad, M. et al. Application of machine learning algorithms for the evaluation of seismic soil liquefaction potential. Front. Struct. Civ. Eng. 15, 490–505 (2021).

    Article 

    Google Scholar
     

  • Ahmad, M. et al. Prediction of liquefaction-induced lateral displacements using Gaussian process regression. Appl. Sci. 12(4), 1977 (2022).

    Article 

    Google Scholar
     

  • Ahmad, F. et al. Prediction of slope stability using Tree Augmented Naive-Bayes classifier: Modeling and performance evaluation. Math. Biosci. Eng. 19(5), 4526–4546 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmad, F. et al. Improved prediction of slope stability under static and dynamic conditions using tree-based models. Parameters 1, 3 (2023).


    Google Scholar
     

  • Ahmad, F. et al. Stability risk assessment of slopes using logistic model tree based on updated case histories. Math. Biosci. Eng. 20(12), 21229–21245 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmad, M. et al. Unconfined compressive strength prediction of stabilized expansive clay soil using machine learning techniques. Multisc. Multidiscip. Model. Exp. Des. 20, 1–15 (2023).


    Google Scholar
     

  • Cao, J., et al., A novel systematic and evolved approach based on XGBoost-firefly algorithm to predict Young’s modulus and unconfined compressive strength of rock. 2021, 1–17.

  • Onyelowe, K.C., Ebid, A. M. & Hanandeh, S. J. A. J. o. C. E. Advanced machine learning prediction of the unconfined compressive strength of geopolymer cement reconstituted granular sand for road and liner construction applications. 2023; 1–15.

  • Onyelowe, K. C. et al. Selected AI optimization techniques and applications in geotechnical engineering. Cogent Eng. 10(1), 2153419 (2023).

    Article 

    Google Scholar
     

  • Onyelowe, K. C. et al. Different AI predictive models for pavement subgrade stiffness and resilient deformation of geopolymer cement-treated lateritic soil with ordinary cement addition. Int. J. Pavement Res. Technol. 20, 1–22 (2022).


    Google Scholar
     

  • Huat, C. Y. et al. Factors influencing pile friction bearing capacity: Proposing a novel procedure based on gradient boosted tree technique. Sustainability 13(21), 11862 (2021).

    Article 

    Google Scholar
     

  • Zeng, J. et al. Prediction of peak particle velocity caused by blasting through the combinations of boosted-CHAID and SVM models with various kernels. Appl. Sci. 11(8), 3705 (2021).

    Article 

    Google Scholar
     

  • Wang, J. et al. A novel combination of PCA and machine learning techniques to select the most important factors for predicting tunnel construction performance. Buildings 12(7), 919 (2022).

    Article 

    Google Scholar
     

  • Koopialipoor, M. et al. Introducing stacking machine learning approaches for the prediction of rock deformation. Transport. Geotech. 34, 100756 (2022).

    Article 

    Google Scholar
     

  • Khatti, J. et al. Prediction of UCS of fine-grained soil based on machine learning part 1: multivariable regression analysis, Gaussian process regression, and gene expression programming. Multisc. Multidiscipl. Model. Exp. Des. 20, 1–24 (2023).


    Google Scholar
     

  • Khatti, J. et al. Prediction of UCS of fine-grained soil based on machine learning part 2: comparison between hybrid relevance vector machine and Gaussian process regression. Multisc. Multidiscipl. Model. Exp. Des. 20, 1–41 (2023).


    Google Scholar
     

  • Salehi, M. et al. Prediction of unconfined compressive strength and California bearing capacity of cement-or lime-pozzolan-stabilised soil admixed with crushed stone waste. Geomech. Geoeng. 18(4), 272–283 (2023).

    Article 

    Google Scholar
     

  • Aurélien, G. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (O’Reilly Publishing, 2019).


    Google Scholar
     

  • Mozumder, R. A. & Laskar, A. I. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network. Comput. Geotech. 69, 291–300 (2015).

    Article 

    Google Scholar
     

  • Mozumder, R. A., Laskar, A. I. & Hussain, M. Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Construct. Build. Mater. 132, 412–424 (2017).

    Article 

    Google Scholar
     

  • Javdanian, H. & Lee, S. Evaluating unconfined compressive strength of cohesive soils stabilized with geopolymer: a computational intelligence approach. Eng. Comput. 35, 191–199 (2019).

    Article 

    Google Scholar
     

  • Nagaraju, T. V. & Prasad, C. D. New prediction models for compressive strength of GGBS-based geopolymer clays using swarm assisted optimization. In Advances in Computer Methods and Geomechanics: IACMAG Symposium 2019, Vol. 1 (Springer, 2020).

  • Ngo, T. Q., Nguyen, L. Q. & Tran, V. Q. Novel hybrid machine learning models including support vector machine with meta-heuristic algorithms in predicting unconfined compressive strength of organic soils stabilised with cement and lime. Int. J. Pavement Eng. 20, 1–18 (2022).


    Google Scholar
     

  • IS. Methods of Test for Soils, Laboratory Determination of Permeability (Bureau of Indian Standards, 1986).


    Google Scholar
     

  • Hosseini, S. et al. Assessment of the ground vibration during blasting in mining projects using different computational approaches. Geomech. Geoeng. 13(1), 18582 (2023).


    Google Scholar
     

  • Islam, S. & Amin, S. H. Prediction of probable backorder scenarios in the supply chain using Distributed Random Forest and Gradient Boosting Machine learning techniques. J. Big Data 7, 1–22 (2020).

    Article 

    Google Scholar
     

  • Ngo, A. Q., Nguyen, L. Q. & Tran, V. Q. Developing interpretable machine learning-Shapley additive explanations model for unconfined compressive strength of cohesive soils stabilized with geopolymer. PLoS One 18(6), e0286950 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 20, 1189–1232 (2001).

    MathSciNet 

    Google Scholar
     

  • Hastie, T. et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Vol 2 (Springer, 2009).

    Book 

    Google Scholar
     

  • Schapire, R. E. Explaining Adaboost, in Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik 37–52 (Springer, 2013).

    Book 

    Google Scholar
     

  • Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997).

    Article 
    MathSciNet 

    Google Scholar
     

  • Schapire, R. E. The strength of weak learnability. Mach. Learn. 5, 197–227 (1990).

    Article 

    Google Scholar
     

  • Koduri, S. B., et al. Prediction of crop production using adaboost regression method. In Journal of Physics: Conference Series (IOP Publishing, 2019).

  • Wu, Y. & Zhou, Y. Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete. Construct. Build. Mater. 330, 127298 (2022).

    Article 

    Google Scholar
     

  • Ahmad, M., Tang, X. & Ahmad, F. Evaluation of Liquefaction-Induced Settlement Using Random Forest and REP Tree Models: Taking Pohang Earthquake as a Case of Illustration. In Natural Hazards-Impacts, Adjustments and Resilience (IntechOpen, 2020).


    Google Scholar
     

  • Ahmad, M. et al. Supervised learning methods for modeling concrete compressive strength prediction at high temperature. Materials 14(8), 1983 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad, M. et al. Novel approach to predicting soil permeability coefficient using Gaussian process regression. Sustainability 14(14), 8781 (2022).

    Article 

    Google Scholar
     

  • Demšar, J. et al. Orange: data mining toolbox in Python. J. Mach. Learn. Res. 14(1), 2349–2353 (2013).


    Google Scholar
     

  • Wang, C., Xu, S. & Yang, J. J. S. Adaboost algorithm in artificial intelligence for optimizing the IRI prediction accuracy of asphalt concrete pavement. Sensors 21(17), 5682 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosseini, S., Poormirzaee, R. & Hajihassani, M. An uncertainty hybrid model for risk assessment and prediction of blast-induced rock mass fragmentation. Int. J. Rock Mech. Min. Sci. 160, 105250 (2022).

    Article 

    Google Scholar
     

  • Khatti, J. & Grover, K. S. J. T. I. G. Estimation of intact rock uniaxial compressive strength using advanced machine learning. Transport. Infrastruct. Geotechnol. 20, 1–34 (2023).


    Google Scholar
     

  • Khatti, J. & Grover, K. S. J. A. O. C. M. I. E. A scientometrics review of soil properties prediction using soft computing approaches. Arch. Comput. Methods Eng. 20, 1–35 (2023).


    Google Scholar
     

  • Amjad, M. et al. Prediction of pile bearing capacity using XGBoost algorithm: modeling and performance evaluation. Appl. Sci. 12(4), 2126 (2022).

    Article 

    Google Scholar
     

  • Khatti, J. et al. Prediction of ultimate bearing capacity of shallow foundations on cohesionless soil using hybrid lstm and rvm approaches: An extended investigation of multicollinearity. Comput. Geotech. 165, 105912 (2024).

    Article 

    Google Scholar
     

  • Zhao, J. et al. Super learner ensemble model: A novel approach for predicting monthly copper price in future. Resour. Policy 85, 103903 (2023).

    Article 

    Google Scholar
     

  • Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106(D7), 7183–7192 (2001).

    Article 
    ADS 

    Google Scholar
     

  •  

    Reference

    Denial of responsibility! TechCodex is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a Comment