Home Artificial Intelligence A newly developed deep learning-based system for automatic detection and classification of small bowel lesions during double-balloon enteroscopy examination | BMC Gastroenterology

A newly developed deep learning-based system for automatic detection and classification of small bowel lesions during double-balloon enteroscopy examination | BMC Gastroenterology

  • Chauhan SS, Manfredi MA, Abu Dayyeh BK, Enestvedt BK, Fujii-Lau LL, Komanduri S, et al. Enteroscopy. Gastrointest Endosc. 2015;82(6):975–90.

    Article 
    PubMed 

    Google Scholar
     

  • Kim JS, Kim BW. Training in endoscopy: esophagogastroduodenoscopy. Clin Endosc. 2017;50(4):318–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • May A. Double-balloon Enteroscopy. Gastrointest Endosc Clin N Am. 2017;27(1):113–22.

    Article 
    PubMed 

    Google Scholar
     

  • Aniwan S, Viriyautsahakul V, Luangsukrerk T, Angsuwatcharakon P, Piyachaturawat P, Kongkam P, et al. Low rate of recurrent bleeding after double-balloon endoscopy-guided therapy in patients with overt obscure gastrointestinal bleeding. Surg Endosc. 2021;35(5):2119–25.

    Article 
    PubMed 

    Google Scholar
     

  • Gomes C, Rubio Mateos JM, Pinho RT, Ponte A, Rodrigues A, Fosado Gayosso M, et al. The rebleeding rate in patients evaluated for obscure gastrointestinal bleeding after negative small bowel findings by device assisted enteroscopy. Rev Esp Enferm Dig. 2020;112(4):262–8.

    PubMed 

    Google Scholar
     

  • Hashimoto R, Matsuda T, Nakahori M. False-negative double-balloon enteroscopy in overt small bowel bleeding: long-term follow-up after negative results. Surg Endosc. 2019;33(8):2635–41.

    Article 
    PubMed 

    Google Scholar
     

  • Shinozaki S, Yano T, Sakamoto H, Sunada K, Hayashi Y, Sato H, et al. Long-term outcomes in patients with overt obscure gastrointestinal bleeding after negative double-balloon endoscopy. Dig Dis Sci. 2015;60(12):3691–6.

    Article 
    PubMed 

    Google Scholar
     

  • Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for visual understanding: a review. Neurocomputing. 2016;187:27–48.

    Article 

    Google Scholar
     

  • Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90.

    Article 

    Google Scholar
     

  • Kumar P, Manash E. Deep learning: a branch of machine learning. J Phys Conf Ser. 2019;1228:012045.

    Article 

    Google Scholar
     

  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell SJ, Norvig P. Artificial intelligence. a modern approach. Third ed. Pearson; 2014.


    Google Scholar
     

  • Bibault J-E, Giraud P, Burgun A. Big data and machine learning in radiation oncology: state of the art and future prospects. Cancer Lett. 2016;382(1):110–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruz-Roa A, González FA, Gilmore H, Basavanhally A, Feldman M, Shih NNC, et al. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci Rep. 2017;7:46450.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast Cancer. Jama. 2017;318(22):2199–210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama. 2016;316(22):2402–10.

    Article 
    PubMed 

    Google Scholar
     

  • Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2018;287(1):313–22.

    Article 
    PubMed 

    Google Scholar
     

  • Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama. 2017;318(22):2211–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yasaka K, Akai H, Kunimatsu A, Abe O, Kiryu S. Liver fibrosis: deep convolutional neural network for staging by using Gadoxetic acid-enhanced hepatobiliary phase MR images. Radiology. 2018;287(1):146–55.

    Article 
    PubMed 

    Google Scholar
     

  • Chahal D, Byrne MF. A primer on artificial intelligence and its application to endoscopy. Gastrointest Endosc. 2020;92(4):813–20.e4.

    Article 
    PubMed 

    Google Scholar
     

  • Le Berre C, Sandborn WJ, Aridhi S, Devignes MD, Fournier L, Smaïl-Tabbone M, et al. Application of artificial intelligence to gastroenterology and Hepatology. Gastroenterology. 2020;158(1):76–94.e2.

    Article 
    PubMed 

    Google Scholar
     

  • Min JK, Kwak MS, Cha JM. Overview of deep learning in gastrointestinal endoscopy. Gut Liver. 2019;13(4):388–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinonquel P, Eelbode T, Bossuyt P, Maes F, Bisschops R. Artificial intelligence and its impact on quality improvement in upper and lower gastrointestinal endoscopy. Dig Endosc. 2021;33(2):242–53.

    Article 
    PubMed 

    Google Scholar
     

  • Suzuki H, Yoshitaka T, Yoshio T, Tada T. Artificial intelligence for cancer detection of the upper gastrointestinal tract. Dig Endosc. 2021;33(2):254–62.

    Article 
    PubMed 

    Google Scholar
     

  • Li J, Zhu Y, Dong Z, He X, Xu M, Liu J, et al. Development and validation of a feature extraction-based logical anthropomorphic diagnostic system for early gastric cancer: a case-control study. EClinicalMedicine. 2022;46:101366.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takenaka K, Ohtsuka K, Fujii T, Oshima S, Okamoto R, Watanabe M. Deep neural network accurately predicts prognosis of ulcerative colitis using endoscopic images. Gastroenterology. 2021;160(6):2175–7.e3.

    Article 
    PubMed 

    Google Scholar
     

  • Wu L, Zhang J, Zhou W, An P, Shen L, Liu J, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut. 2019;68(12):2161–9.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou J, Wu L, Wan X, Shen L, Liu J, Zhang J, et al. A novel artificial intelligence system for the assessment of bowel preparation (with video). Gastrointest Endosc. 2020;91(2):428–35.e2.

    Article 
    PubMed 

    Google Scholar
     

  • Aoki T, Yamada A, Aoyama K, Saito H, Tsuboi A, Nakada A, et al. Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest Endosc. 2019;89(2):357–63.e2.

    Article 
    PubMed 

    Google Scholar
     

  • Aoki T, Yamada A, Kato Y, Saito H, Tsuboi A, Nakada A, et al. Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network. J Gastroenterol Hepatol. 2020;35(7):1196–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aoki T, Yamada A, Kato Y, Saito H, Tsuboi A, Nakada A, et al. Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study. Gastrointest Endosc. 2021;93(1):165–73.e1.

    Article 
    PubMed 

    Google Scholar
     

  • Ding Z, Shi H, Zhang H, Meng L, Fan M, Han C, et al. Gastroenterologist-level identification of small-bowel diseases and Normal variants by capsule endoscopy using a deep-learning model. Gastroenterology. 2019;157(4):1044–54.e5.

    Article 
    PubMed 

    Google Scholar
     

  • Fan S, Xu L, Fan Y, Wei K, Li L. Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images. Phys Med Biol. 2018;63(16):165001.

    Article 
    PubMed 

    Google Scholar
     

  • He J-Y, Wu X, Jiang Y-G, Peng Q, Jain R. Hookworm detection in wireless capsule endoscopy images with deep learning. IEEE Trans Image Process. 2018;27(5):2379–92.

    Article 
    PubMed 

    Google Scholar
     

  • Klang E, Barash Y, Margalit RY, Soffer S, Shimon O, Albshesh A, et al. Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy. Gastrointest Endosc. 2020;91(3):606–13.e2.

    Article 
    PubMed 

    Google Scholar
     

  • Noorda R, Nevárez A, Colomer A, Pons Beltrán V, Naranjo V. Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture. Sci Rep. 2020;10(1):17706.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noya F, Alvarez-Gonzalez MA, Benitez R. Automated angiodysplasia detection from wireless capsule endoscopy. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:3158–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Saito H, Aoki T, Aoyama K, Kato Y, Tsuboi A, Yamada A, et al. Automatic detection and classification of protruding lesions in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest Endosc. 2020;92(1):144–51.e1.

    Article 
    PubMed 

    Google Scholar
     

  • Tsuboi A, Oka S, Aoyama K, Saito H, Aoki T, Yamada A, et al. Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images. Dig Endosc. 2020;32(3):382–90.

    Article 
    PubMed 

    Google Scholar
     

  • Wang S, Xing Y, Zhang L, Gao H, Zhang H. A systematic evaluation and optimization of automatic detection of ulcers in wireless capsule endoscopy on a large dataset using deep convolutional neural networks. Phys Med Biol. 2019;64(23):235014.

    Article 
    PubMed 

    Google Scholar
     

  • Yuan Y, Meng MQ. Deep learning for polyp recognition in wireless capsule endoscopy images. Med Phys. 2017;44(4):1379–89.

    Article 
    PubMed 

    Google Scholar
     

  • Dutta A, Zisserman A. The VIA annotation software for images, audio and video. In: Proceedings of the 27th ACM International Conference on Multimedia (MM ’19), October 21–25, 2019, Nice, France. New York: ACM; 2019. p. 4. https://doi.org/10.1145/3343031.3350535.

  • Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 779–88.


    Google Scholar
     

  • Bernal J, Tajkbaksh N, Sanchez FJ, Matuszewski BJ, Chen H, Yu L, et al. Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge. IEEE Trans Med Imaging. 2017;36(6):1231–49.

    Article 
    PubMed 

    Google Scholar
     

  • Pacal I, Karaboga D. A robust real-time deep learning based automatic polyp detection system. Comput Biol Med. 2021;134:104519.

    Article 
    PubMed 

    Google Scholar
     

  • Qadir HA, Shin Y, Solhusvik J, Bergsland J, Aabakken L, Balasingham I. Toward real-time polyp detection using fully CNNs for 2D Gaussian shapes prediction. Med Image Anal. 2021;68:101897.

    Article 
    PubMed 

    Google Scholar
     

  • He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–8.


    Google Scholar
     

  • Mascarenhas Saraiva M, Ribeiro T, Afonso J, Andrade P, Cardoso P, Ferreira J, et al. Deep Learning and Device-Assisted Enteroscopy: Automatic Detection of Gastrointestinal Angioectasia. Medicina. 2021;57(12):1378.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martins M, Mascarenhas M, Afonso J, Ribeiro T, Cardoso P, Mendes F, et al. Deep-learning and device-assisted enteroscopy: automatic panendoscopic detection of ulcers and erosions. Medicina. 2023;59(1):172.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardoso P, Saraiva MM, Afonso J, Ribeiro T, Andrade P, Ferreira J, et al. Artificial intelligence and device-assisted Enteroscopy: automatic detection of enteric protruding lesions using a convolutional neural network. Clin Transl Gastroenterol. 2022;13(8):e00514.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otani K, Nakada A, Kurose Y, Niikura R, Yamada A, Aoki T, et al. Automatic detection of different types of small-bowel lesions on capsule endoscopy images using a newly developed deep convolutional neural network. Endoscopy. 2020;52(9):786–91.

    Article 
    PubMed 

    Google Scholar
     

  •  

    Reference

    Denial of responsibility! TechCodex is an automatic aggregator of Global media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, and all materials to their authors. For any complaint, please reach us at – [email protected]. We will take necessary action within 24 hours.
    DMCA compliant image

    Leave a Comment